論文の概要: KKT-Informed Neural Network
- arxiv url: http://arxiv.org/abs/2409.09087v1
- Date: Wed, 11 Sep 2024 15:49:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 22:18:51.972241
- Title: KKT-Informed Neural Network
- Title(参考訳): KKTインフォームニューラルネットワーク
- Authors: Carmine Delle Femine,
- Abstract要約: 凸最適化問題を解決するニューラルネットワークに基づくアプローチを提案する。
ネットワークは入力パラメータのバッチが与えられた最適点を推定する。
カルーシュ=クーン=タッカー条件の違反を罰し、その予測がこれらの最適基準に従うことを保証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A neural network-based approach for solving parametric convex optimization problems is presented, where the network estimates the optimal points given a batch of input parameters. The network is trained by penalizing violations of the Karush-Kuhn-Tucker (KKT) conditions, ensuring that its predictions adhere to these optimality criteria. Additionally, since the bounds of the parameter space are known, training batches can be randomly generated without requiring external data. This method trades guaranteed optimality for significant improvements in speed, enabling parallel solving of a class of optimization problems.
- Abstract(参考訳): ニューラルネットワークを用いたパラメトリック凸最適化問題の解法を提案し、入力パラメータのバッチが与えられた最適点を推定する。
このネットワークは、KKT(Karush-Kuhn-Tucker)条件の違反を罰し、その予測がこれらの最適基準に適合することを保証している。
さらに、パラメータ空間のバウンダリが知られているため、外部データを必要とせずにトレーニングバッチをランダムに生成することができる。
この方法では、速度の大幅な改善のために最適性を保証し、最適化問題のクラスを並列で解くことができる。
関連論文リスト
- Karush-Kuhn-Tucker Condition-Trained Neural Networks (KKT Nets) [0.0]
本稿では,KKT(Karush-Kuhn-Tucker)条件を利用して凸最適化問題の解法を提案する。
理論学習ニューラルネットワーク(TTNN)と同様に、凸最適化問題のパラメータがニューラルネットワークに入力される。
この場合の損失関数の選択は損失であり、KKT損失と呼ばれ、ネットワークの出力がKKT条件をどのように満足するかを測定する。
論文 参考訳(メタデータ) (2024-10-21T12:59:58Z) - A constrained optimization approach to improve robustness of neural networks [1.2338729811609355]
クリーンなデータに対する精度を維持しつつ、敵攻撃に対する堅牢性を向上させるために、ファインチューン事前学習ニューラルネットワークに対する非線形プログラミングに基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-18T18:37:14Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Optimal Sets and Solution Paths of ReLU Networks [56.40911684005949]
最適なReLUネットワークの集合を特徴付ける分析フレームワークを開発した。
我々は、ReLUネットワークのニューラル化を継続する条件を確立し、ReLUネットワークに対する感度結果を開発する。
論文 参考訳(メタデータ) (2023-05-31T18:48:16Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
我々は、深層ニューラルネットワーク(DNN)を量子化重みでトレーニングするための新しいアルゴリズム、Annealed Skewed SGD - AskewSGDを開発した。
アクティブなセットと実行可能な方向を持つアルゴリズムとは異なり、AskewSGDは実行可能な全セットの下でのプロジェクションや最適化を避けている。
実験結果から,AskewSGDアルゴリズムは古典的ベンチマークの手法と同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-11-07T18:13:44Z) - Implicit Rate-Constrained Optimization of Non-decomposable Objectives [37.43791617018009]
機械学習における制約付き最適化問題の一家系を考察する。
我々のキーとなる考え方は、閾値パラメータをモデルパラメータの関数として表現するレート制約のある最適化を定式化することである。
本稿では, 標準勾配法を用いて, 結果の最適化問題を解く方法を示す。
論文 参考訳(メタデータ) (2021-07-23T00:04:39Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
コーン制約のある凸最適化プログラムを解くことにより,グローバルな2層ReLUニューラルネットワークの探索が可能であることを示す。
我々の分析は新しく、全ての最適解を特徴づけ、最近、ニューラルネットワークのトレーニングを凸空間に持ち上げるために使われた双対性に基づく分析を活用できない。
論文 参考訳(メタデータ) (2020-06-10T15:38:30Z) - An Outer-approximation Guided Optimization Approach for Constrained
Neural Network Inverse Problems [0.0]
制約付きニューラルネットワーク逆問題とは、与えられたトレーニングされたニューラルネットワークの入力値の最適なセットを見つける最適化問題を指す。
本稿では、ニューラルネットワークの逆問題に対する最適解の特性を、補正活性化ユニットを用いて解析する。
提案手法は, 予測勾配法と比較して, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2020-02-24T17:49:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。