AI-Driven Virtual Teacher for Enhanced Educational Efficiency: Leveraging Large Pretrain Models for Autonomous Error Analysis and Correction
- URL: http://arxiv.org/abs/2409.09403v2
- Date: Sun, 08 Dec 2024 03:25:51 GMT
- Title: AI-Driven Virtual Teacher for Enhanced Educational Efficiency: Leveraging Large Pretrain Models for Autonomous Error Analysis and Correction
- Authors: Tianlong Xu, Yi-Fan Zhang, Zhendong Chu, Shen Wang, Qingsong Wen,
- Abstract summary: This paper introduces an innovative textbfVirtual textbfAI textbfTeacher system designed to autonomously analyze and correct student textbfErrors (VATE)<n>The system has been deployed on the Squirrel AI learning platform for elementary mathematics education, where it achieves 78.3% accuracy in error analysis.
- Score: 21.159378560503036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Students frequently make mistakes while solving mathematical problems, and traditional error correction methods are both time-consuming and labor-intensive. This paper introduces an innovative \textbf{V}irtual \textbf{A}I \textbf{T}eacher system designed to autonomously analyze and correct student \textbf{E}rrors (VATE). Leveraging advanced large language models (LLMs), the system uses student drafts as a primary source for error analysis, which enhances understanding of the student's learning process. It incorporates sophisticated prompt engineering and maintains an error pool to reduce computational overhead. The AI-driven system also features a real-time dialogue component for efficient student interaction. Our approach demonstrates significant advantages over traditional and machine learning-based error correction methods, including reduced educational costs, high scalability, and superior generalizability. The system has been deployed on the Squirrel AI learning platform for elementary mathematics education, where it achieves 78.3\% accuracy in error analysis and shows a marked improvement in student learning efficiency. Satisfaction surveys indicate a strong positive reception, highlighting the system's potential to transform educational practices.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - UniErase: Unlearning Token as a Universal Erasure Primitive for Language Models [54.75551043657238]
We introduce UniErase, a novel unlearning paradigm that employs learnable parametric suffix (unlearning token) to steer language models toward targeted forgetting behaviors.<n>UniErase achieves state-of-the-art (SOTA) performance across batch, sequential, and precise unlearning under fictitious and real-world knowledge settings.
arXiv Detail & Related papers (2025-05-21T15:53:28Z) - MathMistake Checker: A Comprehensive Demonstration for Step-by-Step Math Problem Mistake Finding by Prompt-Guided LLMs [13.756898876556455]
We propose a novel system, MathMistake Checker, to automate step-by-step mistake finding in mathematical problems with lengthy answers.
The system aims to simplify grading, increase efficiency, and enhance learning experiences from a pedagogical perspective.
arXiv Detail & Related papers (2025-03-06T10:19:01Z) - From Correctness to Comprehension: AI Agents for Personalized Error Diagnosis in Education [24.970741456147447]
Large Language Models (LLMs) have demonstrated impressive mathematical reasoning capabilities, achieving near-perfect performance on benchmarks like GSM8K.
However, their application in personalized education remains limited due to an overemphasis on correctness over error diagnosis and feedback generation.
We introduce textbfMathCCS, a benchmark designed for systematic error analysis and tailored feedback.
Second, we develop a sequential error analysis framework that leverages historical data to track trends and improve diagnostic precision.
Third, we propose a multi-agent collaborative framework that combines a Time Series Agent for historical analysis and an MLLM Agent for real-
arXiv Detail & Related papers (2025-02-19T14:57:51Z) - LLM-based Cognitive Models of Students with Misconceptions [55.29525439159345]
This paper investigates whether Large Language Models (LLMs) can be instruction-tuned to meet this dual requirement.
We introduce MalAlgoPy, a novel Python library that generates datasets reflecting authentic student solution patterns.
Our insights enhance our understanding of AI-based student models and pave the way for effective adaptive learning systems.
arXiv Detail & Related papers (2024-10-16T06:51:09Z) - Stepwise Verification and Remediation of Student Reasoning Errors with Large Language Model Tutors [78.53699244846285]
Large language models (LLMs) present an opportunity to scale high-quality personalized education to all.
LLMs struggle to precisely detect student's errors and tailor their feedback to these errors.
Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions.
arXiv Detail & Related papers (2024-07-12T10:11:40Z) - Learning from Teaching Regularization: Generalizable Correlations Should be Easy to Imitate [40.5601980891318]
Generalization remains a central challenge in machine learning.
We propose Learning from Teaching (LoT), a novel regularization technique for deep neural networks to enhance generalization.
LoT operationalizes this concept to improve the generalization of the main model with auxiliary student learners.
arXiv Detail & Related papers (2024-02-05T07:05:17Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
This paper introduces YODA, a teacher-student progressive learning framework.
It emulates the teacher-student education process to improve the efficacy of model fine-tuning.
Experiments show that training LLaMA2 with data from YODA improves SFT with significant performance gain.
arXiv Detail & Related papers (2024-01-28T14:32:15Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - From Mimicking to Integrating: Knowledge Integration for Pre-Trained
Language Models [55.137869702763375]
This paper explores a novel PLM reuse paradigm, Knowledge Integration (KI)
KI aims to merge the knowledge from different teacher-PLMs, each of which specializes in a different classification problem, into a versatile student model.
We then design a Model Uncertainty--aware Knowledge Integration (MUKI) framework to recover the golden supervision for the student.
arXiv Detail & Related papers (2022-10-11T07:59:08Z) - RLTutor: Reinforcement Learning Based Adaptive Tutoring System by
Modeling Virtual Student with Fewer Interactions [10.34673089426247]
We propose a framework for optimizing teaching strategies by constructing a virtual model of the student.
Our results can serve as a buffer between theoretical instructional optimization and practical applications in e-learning systems.
arXiv Detail & Related papers (2021-07-31T15:42:03Z) - Efficient time stepping for numerical integration using reinforcement
learning [0.15393457051344295]
We propose a data-driven time stepping scheme based on machine learning and meta-learning.
First, one or several (in the case of non-smooth or hybrid systems) base learners are trained using RL.
Then, a meta-learner is trained which (depending on the system state) selects the base learner that appears to be optimal for the current situation.
arXiv Detail & Related papers (2021-04-08T07:24:54Z) - SMART: A Situation Model for Algebra Story Problems via Attributed
Grammar [74.1315776256292]
We introduce the concept of a emphsituation model, which originates from psychology studies to represent the mental states of humans in problem-solving.
We show that the proposed model outperforms all previous neural solvers by a large margin while preserving much better interpretability.
arXiv Detail & Related papers (2020-12-27T21:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.