論文の概要: Model Selection Through Model Sorting
- arxiv url: http://arxiv.org/abs/2409.09674v1
- Date: Sun, 15 Sep 2024 09:43:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 19:48:24.043525
- Title: Model Selection Through Model Sorting
- Title(参考訳): モデルソーティングによるモデル選択
- Authors: Mohammad Ali Hajiani, Babak Seyfe,
- Abstract要約: ネスト型経験リスク (NER) と呼ばれるモデル順序選択法を提案する。
UCRデータセットでは、NER法はUCRデータセットの分類の複雑さを劇的に減らす。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel approach to select the best model of the data. Based on the exclusive properties of the nested models, we find the most parsimonious model containing the risk minimizer predictor. We prove the existence of probable approximately correct (PAC) bounds on the difference of the minimum empirical risk of two successive nested models, called successive empirical excess risk (SEER). Based on these bounds, we propose a model order selection method called nested empirical risk (NER). By the sorted NER (S-NER) method to sort the models intelligently, the minimum risk decreases. We construct a test that predicts whether expanding the model decreases the minimum risk or not. With a high probability, the NER and S-NER choose the true model order and the most parsimonious model containing the risk minimizer predictor, respectively. We use S-NER model selection in the linear regression and show that, the S-NER method without any prior information can outperform the accuracy of feature sorting algorithms like orthogonal matching pursuit (OMP) that aided with prior knowledge of the true model order. Also, in the UCR data set, the NER method reduces the complexity of the classification of UCR datasets dramatically, with a negligible loss of accuracy.
- Abstract(参考訳): 本稿では,データの最良のモデルを選択するための新しい手法を提案する。
ネストされたモデルの排他的特性に基づいて、リスク最小化予測器を含む最も類似したモデルを求める。
本研究では, 連続的経験的過剰リスク (SEER) と呼ばれる2つの連続ネストモデルにおける最小経験的リスクの差に基づいて, 確率的近似的(PAC)境界の存在を証明した。
そこで本研究では,ネストした経験的リスク (NER) と呼ばれるモデル順序選択手法を提案する。
モデルをインテリジェントにソートするソートされたNER(S-NER)法により、最小リスクは減少する。
モデルの拡張が最小リスクを減少させるかどうかを予測するテストを構築した。
高い確率で、NERとS-NERは、それぞれリスク最小化予測器を含む真のモデル順序と最も類似したモデルを選択する。
線形回帰において,S-NERモデル選択を用いて,事前情報を持たないS-NER法は,真のモデル順序の事前知識を補助する直交マッチング追従(OMP)のような特徴ソートアルゴリズムの精度より優れていることを示す。
また、UCRデータセットでは、NER法はUCRデータセットの分類の複雑さを劇的に減らし、精度の低下を無視できる。
関連論文リスト
- Inverse Reinforcement Learning with Unknown Reward Model based on
Structural Risk Minimization [9.44879308639364]
逆強化学習(IRL)は通常、報酬関数のモデルが事前に特定され、パラメータのみを推定する。
単純化されたモデルは真の報酬関数を含まないが、高い複雑さを持つモデルは相当なコストと過度なリスクをもたらす。
本稿では,統計的学習から構造リスク最小化(SRM)手法を導入することで,このトレードオフに対処する。
論文 参考訳(メタデータ) (2023-12-27T13:23:17Z) - Learning Rich Rankings [7.940293148084844]
文脈的反復選択(CRS)モデルを構築し、自然の多モード性とリッチネスをランキング空間にもたらす。
構造に依存したテールリスクと予測されるリスクバウンダリによるモデルの下での最大推定の理論的保証を提供する。
また,MNL選択モデルとPlackett-Luce(PL)ランキングモデルに対する最大極大推定器の予測リスクに,最初の厳密な境界を設けた。
論文 参考訳(メタデータ) (2023-12-22T21:40:57Z) - Random Models for Fuzzy Clustering Similarity Measures [0.0]
Adjusted Rand Index (ARI) は、ハードクラスタリングを比較するために広く使われている手法である。
本稿では,ハードクラスタリングとファジィクラスタリングの両方に対して直感的で説明可能な3つのランダムモデルを用いて,ARIを計算するための単一のフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-16T00:07:04Z) - Optimal Multi-Distribution Learning [88.3008613028333]
マルチディストリビューション学習は、$k$の異なるデータ分散における最悪のリスクを最小限に抑える共有モデルを学ぶことを目指している。
本稿では, (d+k)/varepsilon2の順に, サンプルの複雑さを伴って, ヴァレプシロン最適ランダム化仮説を導出するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-08T16:06:29Z) - BRIO: Bringing Order to Abstractive Summarization [107.97378285293507]
非決定論的分布を前提とした新しい学習パラダイムを提案する。
提案手法は, CNN/DailyMail (47.78 ROUGE-1) と XSum (49.07 ROUGE-1) のデータセット上で, 最新の結果が得られる。
論文 参考訳(メタデータ) (2022-03-31T05:19:38Z) - Universal and data-adaptive algorithms for model selection in linear
contextual bandits [52.47796554359261]
モデル選択の最も単純な非自明な例を考える: 単純な多重武装バンディット問題と線形文脈バンディット問題とを区別する。
データ適応的な方法で探索する新しいアルゴリズムを導入し、$mathcalO(dalpha T1- alpha)$という形式の保証を提供する。
我々のアプローチは、いくつかの仮定の下で、ネストされた線形文脈包帯のモデル選択に拡張する。
論文 参考訳(メタデータ) (2021-11-08T18:05:35Z) - Meta-Model Structure Selection: Building Polynomial NARX Model for
Regression and Classification [0.0]
本研究は、回帰と分類問題に対するNARXモデルの構造を選択するための新しいメタヒューリスティックなアプローチを提案する。
新しいアルゴリズムのロバスト性は、異なる非線形特性を持つ複数のシミュレートされた実験システムで試験される。
論文 参考訳(メタデータ) (2021-09-21T02:05:40Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - On the Minimal Error of Empirical Risk Minimization [90.09093901700754]
回帰作業における経験的リスク最小化(ERM)手順の最小誤差について検討する。
私たちの鋭い下限は、データを生成するモデルの単純さに適応する可能性(あるいは不可能)に光を当てています。
論文 参考訳(メタデータ) (2021-02-24T04:47:55Z) - Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve
Optimism, Embrace Virtual Curvature [61.22680308681648]
決定論的報酬を有する1層ニューラルネットバンディットにおいても,グローバル収束は統計的に難解であることを示す。
非線形バンディットとRLの両方に対して,オンラインモデル学習者による仮想アセンジ(Virtual Ascent with Online Model Learner)というモデルベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-08T12:41:56Z) - On Statistical Efficiency in Learning [37.08000833961712]
モデルフィッティングとモデル複雑性のバランスをとるためのモデル選択の課題に対処する。
モデルの複雑さを順次拡大し、選択安定性を高め、コストを削減するオンラインアルゴリズムを提案します。
実験の結果, 提案手法は予測能力が高く, 計算コストが比較的低いことがわかった。
論文 参考訳(メタデータ) (2020-12-24T16:08:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。