Causal Inference with Large Language Model: A Survey
- URL: http://arxiv.org/abs/2409.09822v3
- Date: Sun, 09 Feb 2025 06:59:47 GMT
- Title: Causal Inference with Large Language Model: A Survey
- Authors: Jing Ma,
- Abstract summary: Causal inference has been a pivotal challenge across diverse domains such as medicine and economics.
Recent advancements in natural language processing (NLP) have introduced promising opportunities for traditional causal inference tasks.
- Score: 5.651037052334014
- License:
- Abstract: Causal inference has been a pivotal challenge across diverse domains such as medicine and economics, demanding a complicated integration of human knowledge, mathematical reasoning, and data mining capabilities. Recent advancements in natural language processing (NLP), particularly with the advent of large language models (LLMs), have introduced promising opportunities for traditional causal inference tasks. This paper reviews recent progress in applying LLMs to causal inference, encompassing various tasks spanning different levels of causation. We summarize the main causal problems and approaches, and present a comparison of their evaluation results in different causal scenarios. Furthermore, we discuss key findings and outline directions for future research, underscoring the potential implications of integrating LLMs in advancing causal inference methodologies.
Related papers
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.
We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.
We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Advancing Reasoning in Large Language Models: Promising Methods and Approaches [0.0]
Large Language Models (LLMs) have succeeded remarkably in various natural language processing (NLP) tasks.
Their ability to perform complex reasoning-spanning logical deduction, mathematical problem-solving, commonsense inference, and multi-step reasoning-often falls short of human expectations.
This survey provides a comprehensive review of emerging techniques enhancing reasoning in LLMs.
arXiv Detail & Related papers (2025-02-05T23:31:39Z) - CausalEval: Towards Better Causal Reasoning in Language Models [16.55801836321059]
Causal reasoning (CR) is a crucial aspect of intelligence, essential for problem-solving, decision-making, and understanding the world.
While language models (LMs) can generate rationales for their outputs, their ability to reliably perform causal reasoning remains uncertain.
We introduce CausalEval, a review of research aimed at enhancing LMs for causal reasoning.
arXiv Detail & Related papers (2024-10-22T04:18:19Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
This study explores the factors influencing the performance of Large Language Models (LLMs) in causal discovery tasks.
A higher frequency of causal mentions correlates with better model performance, suggesting that extensive exposure to causal information during training enhances the models' causal discovery capabilities.
arXiv Detail & Related papers (2024-07-29T01:45:05Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) are used to automate decision-making tasks.
In this paper, we evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types.
These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Large Language Models and Causal Inference in Collaboration: A Comprehensive Survey [46.4375135354838]
Causal inference has shown potential in enhancing the predictive accuracy, fairness, robustness, and explainability of Natural Language Processing (NLP) models.
The emergence of generative Large Language Models (LLMs) has significantly impacted various NLP domains.
arXiv Detail & Related papers (2024-03-14T17:47:20Z) - Large Language Models for Causal Discovery: Current Landscape and Future Directions [5.540272236593385]
Causal discovery (CD) and Large Language Models (LLMs) have emerged as transformative fields in artificial intelligence.
This survey examines how LLMs are transforming CD across three key dimensions: direct causal extraction from text, integration of domain knowledge into statistical methods, and refinement of causal structures.
arXiv Detail & Related papers (2024-02-16T20:48:53Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [55.66353783572259]
Causal-Consistency Chain-of-Thought harnesses multi-agent collaboration to bolster the faithfulness and causality of foundation models.
Our framework demonstrates significant superiority over state-of-the-art methods through extensive and comprehensive evaluations.
arXiv Detail & Related papers (2023-08-23T04:59:21Z) - Causal Inference in Natural Language Processing: Estimation, Prediction,
Interpretation and Beyond [38.055142444836925]
We consolidate research across academic areas and situate it in the broader Natural Language Processing landscape.
We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding.
In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models.
arXiv Detail & Related papers (2021-09-02T05:40:08Z) - Towards Causal Representation Learning [96.110881654479]
The two fields of machine learning and graphical causality arose and developed separately.
There is now cross-pollination and increasing interest in both fields to benefit from the advances of the other.
arXiv Detail & Related papers (2021-02-22T15:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.