論文の概要: Dynamic Fraud Detection: Integrating Reinforcement Learning into Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2409.09892v1
- Date: Sun, 15 Sep 2024 23:08:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 17:00:44.985182
- Title: Dynamic Fraud Detection: Integrating Reinforcement Learning into Graph Neural Networks
- Title(参考訳): 動的フラッド検出:グラフニューラルネットワークへの強化学習の統合
- Authors: Yuxin Dong, Jianhua Yao, Jiajing Wang, Yingbin Liang, Shuhan Liao, Minheng Xiao,
- Abstract要約: グラフニューラルネットワークは、グラフ構造内の対話的関係を利用することができるディープラーニングモデルの一種である。
不正行為は取引のごく一部に過ぎません
詐欺師はしばしば 行動を偽装する 最終予測結果に 悪影響を及ぼす可能性がある
- 参考スコア(独自算出の注目度): 39.54354926067617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Financial fraud refers to the act of obtaining financial benefits through dishonest means. Such behavior not only disrupts the order of the financial market but also harms economic and social development and breeds other illegal and criminal activities. With the popularization of the internet and online payment methods, many fraudulent activities and money laundering behaviors in life have shifted from offline to online, posing a great challenge to regulatory authorities. How to efficiently detect these financial fraud activities has become an urgent issue that needs to be resolved. Graph neural networks are a type of deep learning model that can utilize the interactive relationships within graph structures, and they have been widely applied in the field of fraud detection. However, there are still some issues. First, fraudulent activities only account for a very small part of transaction transfers, leading to an inevitable problem of label imbalance in fraud detection. At the same time, fraudsters often disguise their behavior, which can have a negative impact on the final prediction results. In addition, existing research has overlooked the importance of balancing neighbor information and central node information. For example, when the central node has too many neighbors, the features of the central node itself are often neglected. Finally, fraud activities and patterns are constantly changing over time, so considering the dynamic evolution of graph edge relationships is also very important.
- Abstract(参考訳): 金融詐欺とは、不正な手段によって金銭的利益を得る行為である。
このような行動は金融市場の秩序を損なうだけでなく、経済や社会の発展に害を与え、他の違法な犯罪行為を繁殖させる。
インターネットの普及とオンライン支払いの方法により、多くの不正行為やマネーロンダリング行動がオフラインからオンラインに移行し、規制当局にとって大きな課題となっている。
これらの金融不正行為を効率的に検出する方法は、解決すべき緊急の問題となっている。
グラフニューラルネットワークは、グラフ構造内の対話的関係を利用することができるディープラーニングモデルの一種であり、不正検出の分野で広く応用されている。
しかし、まだいくつか問題がある。
第一に、不正行為は取引転送のごく一部を占めるだけで、不正検出においてラベルの不均衡が必然的に問題となる。
同時に、詐欺師はしばしば自分の行動を偽装し、最終的な予測結果に悪影響を及ぼす可能性がある。
さらに、既存の研究では、近隣情報と中央ノード情報のバランスをとることの重要性を見落としている。
例えば、中央ノードに隣接ノードが多すぎる場合、中央ノード自体の特徴は無視されることが多い。
最後に、不正行為やパターンは時間とともに常に変化しており、グラフエッジ関係の動的進化を考慮することも非常に重要である。
関連論文リスト
- Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
本稿では、金融データの異種グラフ表現に注意機構を応用したグラフニューラルネットワーク(GNN)を用いたクレジットカード不正検出手法を提案する。
提案モデルはグラフセージやFI-GRLなどのベンチマークアルゴリズムより優れており、AUC-PRが0.89、F1スコアが0.81である。
論文 参考訳(メタデータ) (2024-10-10T17:05:27Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Fraudulent User Detection Via Behavior Information Aggregation Network
(BIAN) On Large-Scale Financial Social Network [8.687460943376605]
本稿では,ユーザ行動と他のユーザ機能を組み合わせた行動情報集約ネットワーク(BIAN)を提案する。
実世界の大規模金融ソーシャルネットワークデータセットであるDGraphの実験結果は、BIANがAUROCの10.2%の利益を得ていることを示している。
論文 参考訳(メタデータ) (2022-11-04T08:33:06Z) - A Combination of Deep Neural Networks and K-Nearest Neighbors for Credit
Card Fraud Detection [0.0]
本稿では, アンダーサンプリングアルゴリズム, K-nearest Neighbor Algorithm (KNN) と Deep Neural Network (KNN) を含む新しい手法を実装した。
性能評価の結果、DNNモデルは正確な精度(98.12%)を示し、提示された手法が不正取引を検出する優れた能力を示している。
論文 参考訳(メタデータ) (2022-05-27T10:33:27Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
グラフニューラルネットワーク(GNN)は不正検出に強い性能を示している。
ラベル付きデータは大規模な産業問題、特に不正検出には不十分である。
よりラベルのないデータを活用するための新しいグラフ事前学習戦略を提案する。
論文 参考訳(メタデータ) (2021-10-04T03:42:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Supporting Financial Inclusion with Graph Machine Learning and Super-App
Alternative Data [63.942632088208505]
スーパーアプリは、ユーザーとコマースの相互作用についての考え方を変えました。
本稿では,スーパーアプリ内のユーザ間のインタラクションの違いが,借り手行動を予測する新たな情報源となるかを検討する。
論文 参考訳(メタデータ) (2021-02-19T15:13:06Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
コールドスタート(Cold-start)は、新しいユーザの認証に検出システムが失敗したことを指す重要な問題である。
本稿では,各コンポーネントに固有の表現を可能にする異種情報ネットワーク (HIN) としてレビューシステムをモデル化する。
HINとグラフ誘導はカモフラージュ問題(本物のレビュー付き詐欺師)に対処するのに役立ち、これはコールドスタートと組み合わされた場合、すなわち真に最初のレビューを持つ新しい詐欺師がより深刻であることが示されている。
論文 参考訳(メタデータ) (2020-06-10T08:20:13Z) - A Semi-supervised Graph Attentive Network for Financial Fraud Detection [30.645390612737266]
本稿では,多視点ラベル付きおよびラベルなしデータを不正検出に用いる半教師付き減衰型グラフニューラルネットワークSemiSemiGNNを提案する。
ソーシャルリレーションとユーザ属性を利用することで,2つのタスクにおける最先端手法と比較して精度が向上する。
論文 参考訳(メタデータ) (2020-02-28T10:35:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。