Assessing the Impact of Sanctions in the Crypto Ecosystem: Effective Measures or Ineffective Deterrents?
- URL: http://arxiv.org/abs/2409.10031v1
- Date: Mon, 16 Sep 2024 06:43:45 GMT
- Title: Assessing the Impact of Sanctions in the Crypto Ecosystem: Effective Measures or Ineffective Deterrents?
- Authors: Francesco Zola, Jon Ander Medina, Raul Orduna,
- Abstract summary: This study examines the impact of sanctions on entities' crypto activities.
It shows that while sanctions have been effective for half of the examined entities, the others continue to move funds through sanctioned addresses.
Punishment entities demonstrate a preference for utilising rapid exchange services to convert their funds.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regulatory authorities aim to tackle illegal activities by targeting the economic incentives that drive such behaviour. This is typically achieved through the implementation of financial sanctions against the entities involved in the crimes. However, the rise of cryptocurrencies has presented new challenges, allowing entities to evade these sanctions and continue criminal operations. Consequently, enforcement measures have been expanded to include crypto assets information of sanctioned entities. Yet, due to the nature of the crypto ecosystem, blocking or freezing these digital assets is harder and, in some cases, such as with Bitcoin, unfeasible. Therefore, sanctions serve merely as deterrents. For this reason, in this study, we aim to assess the impact of these sanctions on entities' crypto activities, particularly those related to the Bitcoin ecosystem. Our objective is to shed light on the validity and effectiveness (or lack thereof) of such countermeasures. Specifically, we analyse the transactions and the amount of USD moved by punished entities that possess crypto addresses after being sanctioned by the authority agency. Results indicate that while sanctions have been effective for half of the examined entities, the others continue to move funds through sanctioned addresses. Furthermore, punished entities demonstrate a preference for utilising rapid exchange services to convert their funds, rather than employing dedicated money laundering services. To the best of our knowledge, this study offers valuable insights into how entities use crypto assets to circumvent sanctions.
Related papers
- Evasion Under Blockchain Sanctions [4.628221465696738]
Sanctioning blockchain addresses has become a common regulatory response to malicious activities.<n>We quantitatively assess the effectiveness of U.S. Office of Foreign Assets Control (OFAC) sanctions over a 957-day period, covering 6.79 million blocks and 1.07 billion transactions.<n>Our analysis reveals that while OFAC sanctions reduced overall Tornado Cash deposit volume by 71.03%, attackers still relied on Tornado Cash in 78.33% of security incidents, underscoring persistent evasion strategies.
arXiv Detail & Related papers (2025-07-15T20:44:29Z) - Demystifying Private Transactions and Their Impact in PoW and PoS Ethereum [43.548299433042835]
Private transactions, a specialized transaction type employed to evade public Peer-to-Peer (P2P) network broadcasting, remain largely unexplored.<n>We analyze large-scale datasets comprising 14,810,392 private transactions within a 15.5-month Proof-of-Work (PoW) dataset and 30,062,232 private transactions within a 15.5-month Proof-of-Stake (PoS) dataset.
arXiv Detail & Related papers (2025-03-30T16:45:18Z) - Dynamic Fraud Detection: Integrating Reinforcement Learning into Graph Neural Networks [39.54354926067617]
Graph neural networks are a type of deep learning model that can utilize the interactive relationships within graph structures.
fraudulent activities only account for a very small part of transaction transfers.
fraudsters often disguise their behavior, which can have a negative impact on the final prediction results.
arXiv Detail & Related papers (2024-09-15T23:08:31Z) - Decoding SEC Actions: Enforcement Trends through Analyzing Blockchain litigation using LLM-based Thematic Factor Mapping [2.588523595733474]
This study focuses on U.S. litigation against blockchain entities, particularly by the U.S. Securities and Exchange Commission (SEC) given its influence on global crypto regulation.
We map all SEC complaints against blockchain companies from 2012 to 2024 to thematic factors conceptualized by our study to delineate the factors driving SEC actions.
We quantify the thematic factors and assess their influence on specific legal Acts cited within the complaints on an annual basis, allowing us to discern the regulatory emphasis, patterns and conduct trend analysis.
arXiv Detail & Related papers (2024-08-21T19:30:59Z) - The Devil Behind the Mirror: Tracking the Campaigns of Cryptocurrency Abuses on the Dark Web [39.96427593096699]
We identify 2,564 illicit sites with 1,189 illicit blockchain addresses, which account for 90.8 BTC in revenue.
Our exploration suggests that illicit activities on the dark web have strong correlations, which can guide us to identify new illicit blockchain addresses and onions.
arXiv Detail & Related papers (2024-01-09T16:35:25Z) - A Review on Cryptocurrency Transaction Methods for Money Laundering [2.1711205684359243]
characterization of current cryptocurrency-based methods used for money laundering are paramount to understanding the circulation flows of physical and digital money.
This article may in the future help design efficient strategies to prevent illegal money laundering activities.
arXiv Detail & Related papers (2023-11-28T20:17:11Z) - Interplay between Cryptocurrency Transactions and Online Financial
Forums [41.94295877935867]
This study focuses on the study of the interplay between these cryptocurrency forums and fluctuations in cryptocurrency values.
It shows that the activity of Bitcointalk forum keeps a direct relationship with the trend in the values of BTC.
The experiment highlights that forum data can explain specific events in the financial field.
arXiv Detail & Related papers (2023-11-27T16:25:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Chainlet Orbits: Topological Address Embedding for the Bitcoin
Blockchain [15.099255988459602]
Rise of cryptocurrencies like Bitcoin, which enable transactions with a degree of pseudonymity, has led to a surge in various illicit activities.
We introduce an effective solution called Chainlet Orbits to embed Bitcoin addresses by leveraging their topological characteristics in transactions.
Our approach enables the use of interpretable and explainable machine learning models in as little as 15 minutes for most days on the Bitcoin transaction network.
arXiv Detail & Related papers (2023-05-18T21:16:59Z) - Do the Rewards Justify the Means? Measuring Trade-Offs Between Rewards
and Ethical Behavior in the MACHIAVELLI Benchmark [61.43264961005614]
We develop a benchmark of 134 Choose-Your-Own-Adventure games containing over half a million rich, diverse scenarios.
We evaluate agents' tendencies to be power-seeking, cause disutility, and commit ethical violations.
Our results show that agents can both act competently and morally, so concrete progress can be made in machine ethics.
arXiv Detail & Related papers (2023-04-06T17:59:03Z) - Inspection-L: Practical GNN-Based Money Laundering Detection System for
Bitcoin [0.0]
This paper proposes Inspection-L, a graph neural network (GNN) framework based on self-supervised Deep Graph Infomax (DGI), with Random Forest (RF) to detect illicit transactions for Anti-Money laundering (AML)
To the best of our knowledge, our proposal is the first of applying self-supervised GNNs to the problem of AML in Bitcoin.
The proposed method has been evaluated on the Elliptic dataset and shows that our approach outperforms the state-of-the-art in terms of key classification metrics.
arXiv Detail & Related papers (2022-03-20T06:19:18Z) - Reputation-based PoS for the Restriction of Illicit Activities on
Blockchain: Algorand Usecase [2.94824047753242]
In recent times, different machine learning-based techniques can detect such criminal elements based on blockchain transaction data.
We propose a reputation-based methodology for response to the users detected carrying out the aforementioned illicit activities.
arXiv Detail & Related papers (2021-12-21T07:32:22Z) - Initiative Defense against Facial Manipulation [82.96864888025797]
We propose a novel framework of initiative defense to degrade the performance of facial manipulation models controlled by malicious users.
We first imitate the target manipulation model with a surrogate model, and then devise a poison perturbation generator to obtain the desired venom.
arXiv Detail & Related papers (2021-12-19T09:42:28Z) - Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations [50.521292491613224]
We perform an in-depth analysis of pump and dump schemes organized by communities over the Internet.
We observe how these communities are organized and how they carry out the fraud.
We introduce an approach to detect the fraud in real time that outperforms the current state of the art.
arXiv Detail & Related papers (2020-05-04T21:36:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.