論文の概要: ReflectDiffu: Reflect between Emotion-intent Contagion and Mimicry for Empathetic Response Generation via a RL-Diffusion Framework
- arxiv url: http://arxiv.org/abs/2409.10289v1
- Date: Mon, 16 Sep 2024 13:56:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 15:20:32.025930
- Title: ReflectDiffu: Reflect between Emotion-intent Contagion and Mimicry for Empathetic Response Generation via a RL-Diffusion Framework
- Title(参考訳): ReflectDiffu: RL-Diffusion Frameworkによる情緒的反応生成のための感情内感染とミミリーの反射
- Authors: Jiahao Yuan, Zixiang Di, Zhiqing Cui, Guisong Yang, Usman Naseem,
- Abstract要約: 共感応答生成のための軽量フレームワークである ReflectDiffu を紹介する。
感情の伝染を組み込んで感情の表現力を増強し、感情に反応するマスクを用いて重要な感情的要素を特定できる。
感情的な意思決定を正確に意図的な行動に変換することで、感情的な誤認識に起因する共感的な反応の不一致に対処する。
- 参考スコア(独自算出の注目度): 5.135349405469574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Empathetic response generation necessitates the integration of emotional and intentional dynamics to foster meaningful interactions. Existing research either neglects the intricate interplay between emotion and intent, leading to suboptimal controllability of empathy, or resorts to large language models (LLMs), which incur significant computational overhead. In this paper, we introduce ReflectDiffu, a lightweight and comprehensive framework for empathetic response generation. This framework incorporates emotion contagion to augment emotional expressiveness and employs an emotion-reasoning mask to pinpoint critical emotional elements. Additionally, it integrates intent mimicry within reinforcement learning for refinement during diffusion. By harnessing an intent twice reflect the mechanism of Exploring-Sampling-Correcting, ReflectDiffu adeptly translates emotional decision-making into precise intent actions, thereby addressing empathetic response misalignments stemming from emotional misrecognition. Through reflection, the framework maps emotional states to intents, markedly enhancing both response empathy and flexibility. Comprehensive experiments reveal that ReflectDiffu outperforms existing models regarding relevance, controllability, and informativeness, achieving state-of-the-art results in both automatic and human evaluations.
- Abstract(参考訳): 共感的反応生成は、意味のある相互作用を促進するために感情的および意図的なダイナミクスの統合を必要とする。
既存の研究は感情と意図の複雑な相互作用を無視し、共感の最適下制御に繋がるか、あるいは大きな言語モデル(LLM)に頼り、計算オーバーヘッドが大幅に増加する。
本稿では,共感応答生成のための軽量で包括的なフレームワークであるReflectDiffuを紹介する。
この枠組みは感情の伝染を組み込んで感情表現を増強し、感情表現マスクを用いて批判的な感情的要素を識別する。
さらに、拡散中の洗練のための強化学習に意図の模倣を統合する。
リフレクションディッフルは、探索・サンプリング・修正のメカニズムを2回反映して、感情的な意思決定を正確に意図の行動に変換することにより、感情的な誤認識に起因する共感的な反応の不一致に対処する。
リフレクションを通じて、このフレームワークは感情状態と意図をマッピングし、反応の共感と柔軟性の両方を著しく強化する。
総合的な実験により、リフレクションディッフルは、関連性、制御可能性、情報性に関する既存のモデルより優れており、自動評価と人的評価の両方において最先端の結果が得られていることが明らかとなった。
関連論文リスト
- CTSM: Combining Trait and State Emotions for Empathetic Response Model [2.865464162057812]
共感応答生成は、対話システムに話者の感情を知覚し、それに応じて共感応答を生成する。
我々は,共感反応モデル(CTSM)のためのトラストと状態感情の組み合わせを提案する。
対話における感情を十分に知覚するために、まず特徴と状態の感情の埋め込みを構築し、エンコードする。
感情表現を誘導する感情誘導モジュールにより、感情知覚能力をさらに強化する。
論文 参考訳(メタデータ) (2024-03-22T10:45:13Z) - CauESC: A Causal Aware Model for Emotional Support Conversation [79.4451588204647]
既存のアプローチは、苦痛の感情の原因を無視します。
彼らは、話者間の相互作用における感情的ダイナミクスよりも、探究者自身の精神状態に焦点を当てている。
本稿では、まず、苦痛の感情要因と、その原因によって引き起こされる感情効果を認識する新しいフレームワークCauESCを提案する。
論文 参考訳(メタデータ) (2024-01-31T11:30:24Z) - E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation [33.57399405783864]
本稿では,感情相関を改良した共感対話生成フレームワークを提案する。
具体的には、文脈に基づく感情の相互作用を捉えるために、マルチレゾリューション感情グラフを考案した。
そこで我々は,感情相関強化デコーダを提案し,新しい相関認識アグリゲーションとソフト/ハード戦略を提案する。
論文 参考訳(メタデータ) (2023-11-25T12:47:39Z) - Use of a Taxonomy of Empathetic Response Intents to Control and
Interpret Empathy in Neural Chatbots [4.264192013842096]
オープンドメインの会話エージェントの領域における近年のトレンドは、感情的なプロンプトに共感的に会話できるようにすることである。
現在のアプローチでは、エンド・ツー・エンドのアプローチに従うか、同様の感情ラベルに応答を条件づけて共感的な反応を生成する。
我々は,次の応答の感情/意図を予測し,これらの予測された感情/意図に基づいて応答を生成するためのルールベースおよびニューラルアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-17T10:03:03Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
情緒的対話生成のためのシリアル・アンド・感情知識相互作用(SEEK)法を提案する。
我々は,会話中の感情のダイナミックス(感情の流れ)に敏感な微粒なエンコーディング戦略を用いて,応答の感情依存特性を予測するとともに,知識と感情の相互作用をモデル化し,より敏感な応答を生成する新しい枠組みを設計する。
論文 参考訳(メタデータ) (2022-10-21T03:51:18Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
意味レベルと感情レベルにおける投稿に対する応答の整合性は、人間のような対話を提供する対話システムにとって不可欠である。
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-11-15T01:55:37Z) - MIME: MIMicking Emotions for Empathetic Response Generation [82.57304533143756]
共感応答生成への現在のアプローチは、入力テキストで表現された感情の集合を平らな構造として見る。
共感反応は, 肯定的, 否定的, 内容に応じて, ユーザの感情を様々な程度に模倣することが多い。
論文 参考訳(メタデータ) (2020-10-04T00:35:47Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。