Spiers Memorial Lecture: How to do impactful research in artificial intelligence for chemistry and materials science
- URL: http://arxiv.org/abs/2409.10304v2
- Date: Tue, 8 Oct 2024 13:57:20 GMT
- Title: Spiers Memorial Lecture: How to do impactful research in artificial intelligence for chemistry and materials science
- Authors: Austin Cheng, Cher Tian Ser, Marta Skreta, Andrés Guzmán-Cordero, Luca Thiede, Andreas Burger, Abdulrahman Aldossary, Shi Xuan Leong, Sergio Pablo-García, Felix Strieth-Kalthoff, Alán Aspuru-Guzik,
- Abstract summary: We first outline current applications across a diversity of problems in chemistry.
Then, we discuss how machine learning researchers view and approach problems in the field.
Finally, we provide our considerations for maximizing impact when researching machine learning for chemistry.
- Score: 1.7172216435186003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has been pervasively touching many fields of science. Chemistry and materials science are no exception. While machine learning has been making a great impact, it is still not reaching its full potential or maturity. In this perspective, we first outline current applications across a diversity of problems in chemistry. Then, we discuss how machine learning researchers view and approach problems in the field. Finally, we provide our considerations for maximizing impact when researching machine learning for chemistry.
Related papers
- An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
We introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature.
Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - ChemLLM: A Chemical Large Language Model [49.308528569982805]
Large language models (LLMs) have made impressive progress in chemistry applications.
However, the community lacks an LLM specifically designed for chemistry.
Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry.
arXiv Detail & Related papers (2024-02-10T01:11:59Z) - Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
We propose a platform, coined Geom3D, which enables benchmarking the effectiveness of geometric strategies.
Geom3D contains 16 advanced symmetry-informed geometric representation models and 14 geometric pretraining methods over 46 diverse datasets.
arXiv Detail & Related papers (2023-06-15T05:37:25Z) - Physics-Informed Machine Learning: A Survey on Problems, Methods and
Applications [31.157298426186653]
Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data.
We present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge.
arXiv Detail & Related papers (2022-11-15T11:34:30Z) - Maximizing information from chemical engineering data sets: Applications
to machine learning [61.442473332320176]
We identify four characteristics of data arising in chemical engineering applications that make applying classical artificial intelligence approaches difficult.
For each of these data characteristics, we discuss applications where these data characteristics arise and show how current chemical engineering research is extending the fields of data science and machine learning to incorporate these challenges.
arXiv Detail & Related papers (2022-01-25T01:25:45Z) - Scientific intuition inspired by machine learning generated hypotheses [2.294014185517203]
We shift the focus on the insights and the knowledge obtained by the machine learning models themselves.
We apply gradient boosting in decision trees to extract human interpretable insights from big data sets from chemistry and physics.
The ability to go beyond numerics opens the door to use machine learning to accelerate the discovery of conceptual understanding.
arXiv Detail & Related papers (2020-10-27T12:12:12Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - Autonomous discovery in the chemical sciences part II: Outlook [2.566673015346446]
This two-part review examines how automation has contributed to different aspects of discovery in the chemical sciences.
It is increasingly important to articulate what the role of automation and computation has been in the scientific process.
arXiv Detail & Related papers (2020-03-30T19:11:35Z) - Autonomous discovery in the chemical sciences part I: Progress [2.566673015346446]
This two-part review examines how automation has contributed to different aspects of discovery in the chemical sciences.
In the first part, we describe a classification for discoveries of physical matter and how they are unified as search problems.
We then introduce a set of questions and considerations relevant to assessing the extent of autonomy.
arXiv Detail & Related papers (2020-03-30T19:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.