論文の概要: Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning
- arxiv url: http://arxiv.org/abs/2409.10331v1
- Date: Mon, 16 Sep 2024 14:41:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 15:10:41.931934
- Title: Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning
- Title(参考訳): ビッグデータ分析とディープラーニングに基づく金融知的リスク制御プラットフォームの研究と設計
- Authors: Shuochen Bi, Yufan Lian, Ziyue Wang,
- Abstract要約: 本稿では、金融機関の内部および外部データの完全統合を実現するために、ビッグデータ技術を完全に活用する方法を考察する。
この記事では、ビッグデータマイニングとリアルタイムストリーミングデータ処理技術を採用して、さまざまなビジネスデータを監視し、分析し、警告する。
- 参考スコア(独自算出の注目度): 2.766666938196471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the financial field of the United States, the application of big data technology has become one of the important means for financial institutions to enhance competitiveness and reduce risks. The core objective of this article is to explore how to fully utilize big data technology to achieve complete integration of internal and external data of financial institutions, and create an efficient and reliable platform for big data collection, storage, and analysis. With the continuous expansion and innovation of financial business, traditional risk management models are no longer able to meet the increasingly complex market demands. This article adopts big data mining and real-time streaming data processing technology to monitor, analyze, and alert various business data. Through statistical analysis of historical data and precise mining of customer transaction behavior and relationships, potential risks can be more accurately identified and timely responses can be made. This article designs and implements a financial big data intelligent risk control platform. This platform not only achieves effective integration, storage, and analysis of internal and external data of financial institutions, but also intelligently displays customer characteristics and their related relationships, as well as intelligent supervision of various risk information
- Abstract(参考訳): 米国の金融分野において、ビッグデータ技術の応用は、金融機関にとって競争力を高めリスクを減らす重要な手段の1つとなっている。
本稿の中核となる目的は、金融機関の内部および外部データの完全な統合を実現するために、ビッグデータ技術を完全に活用する方法を探求し、ビッグデータ収集、ストレージ、分析のための効率的で信頼性の高いプラットフォームを構築することである。
金融ビジネスの継続的な拡大と革新により、従来のリスクマネジメントモデルは、ますます複雑な市場要求を満たすことができない。
この記事では、ビッグデータマイニングとリアルタイムストリーミングデータ処理技術を採用して、さまざまなビジネスデータを監視し、分析し、警告する。
履歴データの統計的分析と顧客の取引行動と関係の正確なマイニングにより、潜在的なリスクをより正確に識別し、タイムリーに応答することができる。
この記事では、金融ビッグデータのインテリジェントなリスク管理プラットフォームを設計、実装する。
このプラットフォームは、金融機関の内部・外部データの効果的な統合、保管、分析だけでなく、顧客特性とその関連性をインテリジェントに表示し、さまざまなリスク情報のインテリジェントな監視を行う。
関連論文リスト
- Analysis of Financial Risk Behavior Prediction Using Deep Learning and Big Data Algorithms [7.713045399751312]
本稿では,金融リスク予測のためのディープラーニングとビッグデータアルゴリズムの有効性と有効性について検討する。
ディープラーニングベースのビッグデータリスク予測フレームワークを設計し、実際の財務データセット上で実験的に検証する。
論文 参考訳(メタデータ) (2024-10-25T08:52:04Z) - Design and Optimization of Big Data and Machine Learning-Based Risk Monitoring System in Financial Markets [9.599753686171217]
本稿では,ビッグデータと機械学習に基づくリスク監視システムの設計と最適化を行う。
大規模な財務データと高度な機械学習アルゴリズムを効果的に統合する。
このシステムはリスク管理の効率と正確性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-28T00:04:34Z) - Enhancing Financial Inclusion and Regulatory Challenges: A Critical Analysis of Digital Banks and Alternative Lenders Through Digital Platforms, Machine Learning, and Large Language Models Integration [0.0]
本稿では,デジタル銀行と代替銀行が金融包摂性に与える影響とビジネスモデルがもたらす規制課題について考察する。
デジタルプラットフォーム、機械学習(ML)、Large Language Models(LLM)の統合について論じる。
論文 参考訳(メタデータ) (2024-04-18T05:00:53Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Dynamic Datasets and Market Environments for Financial Reinforcement
Learning [68.11692837240756]
FinRL-Metaは、現実世界の市場からジムスタイルの市場環境へ動的データセットを処理するライブラリである。
我々は,ユーザが新しい取引戦略を設計するための足場として,人気のある研究論文を例示し,再現する。
また、ユーザが自身の結果を視覚化し、相対的なパフォーマンスを評価するために、このライブラリをクラウドプラットフォームにデプロイします。
論文 参考訳(メタデータ) (2023-04-25T22:17:31Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - Financial data analysis application via multi-strategy text processing [0.2741266294612776]
本稿では、主に中国A株会社の株価取引データとニュースに焦点を当てる。
本稿では,自然言語処理(NLP)と知識グラフ(KG)技術を用いた金融テキスト処理アプリケーションシナリオの深層学習に向けた取り組みと計画について述べる。
論文 参考訳(メタデータ) (2022-04-25T01:56:36Z) - A big data intelligence marketplace and secure analytics experimentation
platform for the aviation industry [0.0]
本稿では,新しい航空データおよびインテリジェンス市場を提供するICARUSビッグデータ対応プラットフォームを紹介する。
データ収集、データキュレーション、データ探索から、データ統合とデータ分析まで、完全なビッグデータライフサイクルを総括的に処理します。
論文 参考訳(メタデータ) (2021-11-18T18:51:40Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。