論文の概要: Security, Trust and Privacy challenges in AI-driven 6G Networks
- arxiv url: http://arxiv.org/abs/2409.10337v1
- Date: Mon, 16 Sep 2024 14:48:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 14:28:31.963356
- Title: Security, Trust and Privacy challenges in AI-driven 6G Networks
- Title(参考訳): AI駆動の6Gネットワークにおけるセキュリティ、信頼、プライバシの課題
- Authors: Helena Rifa-Pous, Victor Garcia-Font, Carlos Nunez-Gomez, Julian Salas,
- Abstract要約: 本稿では, 6G ネットワークのインフラの進化について考察し, より非凝集な構造への遷移を強調した。
AI中心のアーキテクチャから生じるネットワーク攻撃の分類を示し、これらの新興脅威を検出または緩和するために設計された技術を探究する。
この論文は、ロバストネットワークの確保において、AIの利用に関連する意味とリスクを調べることで締めくくっている。
- 参考スコア(独自算出の注目度): 2.362412515574206
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of 6G networks promises unprecedented advancements in wireless communication, offering wider bandwidth and lower latency compared to its predecessors. This article explores the evolving infrastructure of 6G networks, emphasizing the transition towards a more disaggregated structure and the integration of artificial intelligence (AI) technologies. Furthermore, it explores the security, trust and privacy challenges and attacks in 6G networks, particularly those related to the use of AI. It presents a classification of network attacks stemming from its AI-centric architecture and explores technologies designed to detect or mitigate these emerging threats. The paper concludes by examining the implications and risks linked to the utilization of AI in ensuring a robust network.
- Abstract(参考訳): 6Gネットワークの出現は、無線通信における前例のない進歩を約束する。
本稿では、6Gネットワークの進化する基盤について考察し、より解体された構造への移行と人工知能(AI)技術の統合を強調した。
さらに、6Gネットワーク、特にAIの使用に関連するセキュリティ、信頼、プライバシの課題と攻撃についても検討している。
AI中心のアーキテクチャから生じるネットワーク攻撃の分類を示し、これらの新興脅威を検出または緩和するために設計された技術を探究する。
この論文は、ロバストネットワークの確保において、AIの利用に関連する意味とリスクを調べることで締めくくっている。
関連論文リスト
- An Approach To Enhance IoT Security In 6G Networks Through Explainable AI [1.9950682531209158]
6G通信は、特にIoTにおいて、画期的な機能を提供する6Gによって大きく進化した。
IoTを6Gに統合することで、高度なテクノロジによって導入された脆弱性による攻撃面の拡大という、新たなセキュリティ上の課題が提示される。
本研究は、木に基づく機械学習アルゴリズムを用いて複雑なデータセットを管理し、機能の重要性を評価することで、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-10-04T20:14:25Z) - From 5G to 6G: A Survey on Security, Privacy, and Standardization Pathways [21.263571241047178]
6Gのビジョンは、より高速なデータレート、ほぼゼロのレイテンシ、より高いキャパシティでネットワーク機能を強化することである。
この進歩は、没入型混合現実体験、ホログラフィー通信、スマートシティインフラの実現を目指している。
6Gの拡張は、不正アクセスやデータ漏洩など、重要なセキュリティとプライバシの懸念を提起する。
論文 参考訳(メタデータ) (2024-10-04T03:03:44Z) - Penetration Testing of 5G Core Network Web Technologies [53.89039878885825]
Web セキュリティの観点から 5G コアのセキュリティ評価を行った。
我々はSTRIDE脅威モデリングアプローチを用いて、脅威ベクトルと関連する攻撃の完全なリストを定義する。
我々の分析によると、これらのコアはすべて、特定された攻撃ベクトルのうち少なくとも2つに対して脆弱である。
論文 参考訳(メタデータ) (2024-03-04T09:27:11Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - Edge AI Empowered Physical Layer Security for 6G NTN: Potential Threats and Future Opportunities [33.36351274737824]
本稿では,6G Non-Terrestrial Networks (NTN) のコンテキストにおいて物理層が遭遇する可能性のあるリスクについて概説する。
本研究は,最先端AI技術の物理層セキュリティ向上効果を示すことを目的として,エッジAIの6G領域における最も予測可能な設計戦略をレビューする。
本研究は,次世代の信頼性の高い6G通信ネットワークにおけるエッジサーバ/デバイスの物理層セキュリティ向上を目的とした今後の研究の基盤となる。
論文 参考訳(メタデータ) (2023-10-03T07:06:57Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
次世代無線ネットワーク(例:6G)は人工知能(AI)ネイティブである。
本稿では、新たな因果推論分野を基盤として、AIネイティブな無線ネットワークを構築するための新しいフレームワークを紹介する。
因果発見と表現によって対処できる無線ネットワークの課題をいくつか挙げる。
論文 参考訳(メタデータ) (2023-09-23T00:05:39Z) - AI Empowered Net-RCA for 6G [12.368396458140326]
6Gは、より高いデータレート、信頼性の向上、ユビキタスAIサービス、大規模な接続デバイスのサポートを提供すると想定されている。
6Gは前機種よりずっと複雑だ。
システムスケールと複雑性の増大、レガシネットワークとの共存、およびサービス要件の多様化は、必然的に、将来の6Gネットワークの保守コストと労力を増大させます。
論文 参考訳(メタデータ) (2022-12-01T07:38:32Z) - Transformer-Empowered 6G Intelligent Networks: From Massive MIMO
Processing to Semantic Communication [71.21459460829409]
トランスフォーマーとして知られる新しいディープラーニングアーキテクチャを導入し、その6Gネットワーク設計への影響について論じる。
具体的には、6GネットワークにおけるMIMO(Multiple-input multiple-output)システムと様々な意味コミュニケーション問題に対するトランスフォーマーベースのソリューションを提案する。
論文 参考訳(メタデータ) (2022-05-08T03:22:20Z) - Network and Physical Layer Attacks and countermeasures to AI-Enabled 6G
O-RAN [1.7811776494967646]
本稿では,AI駆動型6G無線アクセスネットワーク(RAN)のセキュリティへの影響について検討する。
Open RAN(O-RAN)では、業界主導のオープンアーキテクチャと、AIコントロールを備えた次世代RANを構築するためのインターフェースについて説明している。
論文 参考訳(メタデータ) (2021-06-01T16:36:37Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。