論文の概要: An Approach To Enhance IoT Security In 6G Networks Through Explainable AI
- arxiv url: http://arxiv.org/abs/2410.05310v1
- Date: Fri, 4 Oct 2024 20:14:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 19:37:51.347592
- Title: An Approach To Enhance IoT Security In 6G Networks Through Explainable AI
- Title(参考訳): 説明可能なAIによる6GネットワークにおけるIoTセキュリティの強化
- Authors: Navneet Kaur, Lav Gupta,
- Abstract要約: 6G通信は、特にIoTにおいて、画期的な機能を提供する6Gによって大きく進化した。
IoTを6Gに統合することで、高度なテクノロジによって導入された脆弱性による攻撃面の拡大という、新たなセキュリティ上の課題が提示される。
本研究は、木に基づく機械学習アルゴリズムを用いて複雑なデータセットを管理し、機能の重要性を評価することで、これらの課題に対処する。
- 参考スコア(独自算出の注目度): 1.9950682531209158
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Wireless communication has evolved significantly, with 6G offering groundbreaking capabilities, particularly for IoT. However, the integration of IoT into 6G presents new security challenges, expanding the attack surface due to vulnerabilities introduced by advanced technologies such as open RAN, terahertz (THz) communication, IRS, massive MIMO, and AI. Emerging threats like AI exploitation, virtualization risks, and evolving attacks, including data manipulation and signal interference, further complicate security efforts. As 6G standards are set to be finalized by 2030, work continues to align security measures with technological advances. However, substantial gaps remain in frameworks designed to secure integrated IoT and 6G systems. Our research addresses these challenges by utilizing tree-based machine learning algorithms to manage complex datasets and evaluate feature importance. We apply data balancing techniques to ensure fair attack representation and use SHAP and LIME to improve model transparency. By aligning feature importance with XAI methods and cross-validating for consistency, we boost model accuracy and enhance IoT security within the 6G ecosystem.
- Abstract(参考訳): 無線通信は大幅に進化し、6Gは画期的な機能、特にIoTを提供している。
しかし、IoTを6Gに統合することは、オープンRAN、テラヘルツ(THz)通信、IRS、大規模なMIMO、AIといった先進技術が導入した脆弱性による攻撃面の拡大という、新たなセキュリティ上の課題を提示している。
AIのエクスプロイトや仮想化リスク、データ操作や信号干渉など、進化する攻撃といった新たな脅威は、セキュリティ作業をさらに複雑にします。
6G標準は2030年までに完成する予定であるため、セキュリティ対策と技術進歩の整合性は引き続き維持される。
しかし、統合IoTと6Gシステムを保護するために設計されたフレームワークには、大きなギャップが残っている。
本研究は、木に基づく機械学習アルゴリズムを用いて複雑なデータセットを管理し、機能の重要性を評価することで、これらの課題に対処する。
我々は、公正な攻撃表現を保証するためにデータバランシング技術を適用し、SHAPとLIMEを使用してモデルの透明性を向上させる。
XAIメソッドと機能の重要性を一致させ、一貫性をクロスバリデーションすることで、モデルの精度を高め、6Gエコシステム内のIoTセキュリティを強化します。
関連論文リスト
- From 5G to 6G: A Survey on Security, Privacy, and Standardization Pathways [21.263571241047178]
6Gのビジョンは、より高速なデータレート、ほぼゼロのレイテンシ、より高いキャパシティでネットワーク機能を強化することである。
この進歩は、没入型混合現実体験、ホログラフィー通信、スマートシティインフラの実現を目指している。
6Gの拡張は、不正アクセスやデータ漏洩など、重要なセキュリティとプライバシの懸念を提起する。
論文 参考訳(メタデータ) (2024-10-04T03:03:44Z) - Security, Trust and Privacy challenges in AI-driven 6G Networks [2.362412515574206]
本稿では, 6G ネットワークのインフラの進化について考察し, より非凝集な構造への遷移を強調した。
AI中心のアーキテクチャから生じるネットワーク攻撃の分類を示し、これらの新興脅威を検出または緩和するために設計された技術を探究する。
この論文は、ロバストネットワークの確保において、AIの利用に関連する意味とリスクを調べることで締めくくっている。
論文 参考訳(メタデータ) (2024-09-16T14:48:20Z) - A Life-long Learning Intrusion Detection System for 6G-Enabled IoV [3.2284427438223013]
6G技術は、非常に高いデータレートとシームレスなネットワークカバレッジで、Internet of Vehicles(IoV)に革命をもたらすだろう。
6Gは、IoVのサイバー脅威に対する感受性を高めるだろう。
本稿では,生涯学習のパラダイムを活用した新しい侵入検知システムを提案する。
論文 参考訳(メタデータ) (2024-07-22T15:07:27Z) - Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts [80.0638227807621]
生成人工知能(GAI)モデルは、従来のAI手法よりも優れていることを示した。
ゲート機構による予測に複数の専門家モデルを使用するMoEは、可能なソリューションを提案する。
論文 参考訳(メタデータ) (2024-05-07T11:13:17Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
日々の生活にIoT(Internet of Things)アプリケーションを統合することで、データトラフィックが急増し、重大なセキュリティ上の問題が発生しています。
本稿では、コストと精度のバランスの取れたトレードオフを見つけるための新しい手法を導入することにより、エッジレベルでのMLベースのIDSの有効性を向上させることに焦点を当てる。
論文 参考訳(メタデータ) (2024-04-29T21:26:18Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
生成人工知能(GAI)は、現実的なデータを生成し、高度な意思決定を促進する能力を持っている。
GAIを現代のモノのインターネット(IoT)に統合することによって、ジェネレーティブ・インターネット・オブ・モノ(GIoT)が登場し、社会の様々な側面に革命をもたらす大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-10-27T02:58:11Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - Network and Physical Layer Attacks and countermeasures to AI-Enabled 6G
O-RAN [1.7811776494967646]
本稿では,AI駆動型6G無線アクセスネットワーク(RAN)のセキュリティへの影響について検討する。
Open RAN(O-RAN)では、業界主導のオープンアーキテクチャと、AIコントロールを備えた次世代RANを構築するためのインターフェースについて説明している。
論文 参考訳(メタデータ) (2021-06-01T16:36:37Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z) - Federated Learning for 6G Communications: Challenges, Methods, and
Future Directions [71.31783903289273]
6Gとフェデレーション学習の統合を導入し、6Gのための潜在的なフェデレーション学習アプリケーションを提供する。
6G通信の文脈において,重要な技術的課題,それに対応するフェデレーション学習手法,および今後のフェデレーション学習研究のためのオープンな課題について述べる。
論文 参考訳(メタデータ) (2020-06-04T15:17:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。