Ethical Challenges in Computer Vision: Ensuring Privacy and Mitigating Bias in Publicly Available Datasets
- URL: http://arxiv.org/abs/2409.10533v3
- Date: Sun, 22 Sep 2024 16:40:09 GMT
- Title: Ethical Challenges in Computer Vision: Ensuring Privacy and Mitigating Bias in Publicly Available Datasets
- Authors: Ghalib Ahmed Tahir,
- Abstract summary: This paper aims to shed light on the ethical problems of creating and deploying computer vision tech.
Computer vision has become a vital tool in many industries, including medical care, security systems, and trade.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to shed light on the ethical problems of creating and deploying computer vision tech, particularly in using publicly available datasets. Due to the rapid growth of machine learning and artificial intelligence, computer vision has become a vital tool in many industries, including medical care, security systems, and trade. However, extensive use of visual data that is often collected without consent due to an informed discussion of its ramifications raises significant concerns about privacy and bias. The paper also examines these issues by analyzing popular datasets such as COCO, LFW, ImageNet, CelebA, PASCAL VOC, etc., that are usually used for training computer vision models. We offer a comprehensive ethical framework that addresses these challenges regarding the protection of individual rights, minimization of bias as well as openness and responsibility. We aim to encourage AI development that will take into account societal values as well as ethical standards to avoid any public harm.
Related papers
- Smoke Screens and Scapegoats: The Reality of General Data Protection Regulation Compliance -- Privacy and Ethics in the Case of Replika AI [1.325665193924634]
This paper takes a critical approach towards examining the intricacies of these issues within AI companion services.
We analyze articles from public media about the company and its practices to gain insight into the trustworthiness of information provided in the policy.
The results reveal despite privacy notices, data collection practices might harvest personal data without users' full awareness.
arXiv Detail & Related papers (2024-11-07T07:36:19Z) - Assessing Privacy Policies with AI: Ethical, Legal, and Technical Challenges [6.916147439085307]
Large Language Models (LLMs) can be used to assess privacy policies for users automatically.
We explore the challenges of this approach in three pillars, namely technical feasibility, ethical implications, and legal compatibility.
Our findings aim to identify potential for future research, and to foster a discussion on the use of LLM technologies.
arXiv Detail & Related papers (2024-10-10T21:36:35Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Privacy and Copyright Protection in Generative AI: A Lifecycle Perspective [28.968233485060654]
We discuss the multifaceted challenges of privacy and copyright protection within the data lifecycle.
We advocate for integrated approaches that combines technical innovation with ethical foresight.
This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.
arXiv Detail & Related papers (2023-11-30T05:03:08Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
Ethical concerns associated with AI are multifaceted, including challenging issues of fairness, privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and environmental impact.
This work unifies the current and future ethical concerns of deploying AI into society.
arXiv Detail & Related papers (2023-11-28T21:00:56Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
There have been severe concerns over the trustworthiness of AI technologies.
Machine and deep learning algorithms depend heavily on the data used during their development.
We propose a framework to evaluate the datasets through a responsible rubric.
arXiv Detail & Related papers (2023-10-24T14:01:53Z) - Proposing an Interactive Audit Pipeline for Visual Privacy Research [0.0]
We argue for the use of fairness to discover bias and fairness issues in systems, assert the need for a responsible human-over-the-loop, and reflect on the need to explore research agendas that have harmful societal impacts.
Our goal is to provide a systematic analysis of the machine learning pipeline for visual privacy and bias issues.
arXiv Detail & Related papers (2021-11-07T01:51:43Z) - An Ethical Highlighter for People-Centric Dataset Creation [62.886916477131486]
We propose an analytical framework to guide ethical evaluation of existing datasets and to serve future dataset creators in avoiding missteps.
Our work is informed by a review and analysis of prior works and highlights where such ethical challenges arise.
arXiv Detail & Related papers (2020-11-27T07:18:44Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
This paper proposes a framework of Privacy-preserving Credit risk modeling based on Adversarial Learning (PCAL)
PCAL aims to mask the private information inside the original dataset, while maintaining the important utility information for the target prediction task performance.
Results indicate that PCAL can learn an effective, privacy-free representation from user data, providing a solid foundation towards privacy-preserving machine learning for credit risk analysis.
arXiv Detail & Related papers (2020-10-06T07:04:59Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
Despite data protection laws and an acknowledged right to privacy, trading personal information has become a business equated with "trading oil"
An open conflict is arising between business demands for data and a desire for privacy.
We propose and test a vision of a personal information market with privacy.
arXiv Detail & Related papers (2020-05-13T13:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.