論文の概要: SoccerNet 2024 Challenges Results
- arxiv url: http://arxiv.org/abs/2409.10587v1
- Date: Mon, 16 Sep 2024 14:12:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 20:59:28.875590
- Title: SoccerNet 2024 Challenges Results
- Title(参考訳): SoccerNet 2024の結果に挑戦
- Authors: Anthony Cioppa, Silvio Giancola, Vladimir Somers, Victor Joos, Floriane Magera, Jan Held, Seyed Abolfazl Ghasemzadeh, Xin Zhou, Karolina Seweryn, Mateusz Kowalczyk, Zuzanna Mróz, Szymon Łukasik, Michał Hałoń, Hassan Mkhallati, Adrien Deliège, Carlos Hinojosa, Karen Sanchez, Amir M. Mansourian, Pierre Miralles, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Adam Gorski, Albert Clapés, Andrei Boiarov, Anton Afanasiev, Artur Xarles, Atom Scott, ByoungKwon Lim, Calvin Yeung, Cristian Gonzalez, Dominic Rüfenacht, Enzo Pacilio, Fabian Deuser, Faisal Sami Altawijri, Francisco Cachón, HanKyul Kim, Haobo Wang, Hyeonmin Choe, Hyunwoo J Kim, Il-Min Kim, Jae-Mo Kang, Jamshid Tursunboev, Jian Yang, Jihwan Hong, Jimin Lee, Jing Zhang, Junseok Lee, Kexin Zhang, Konrad Habel, Licheng Jiao, Linyi Li, Marc Gutiérrez-Pérez, Marcelo Ortega, Menglong Li, Milosz Lopatto, Nikita Kasatkin, Nikolay Nemtsev, Norbert Oswald, Oleg Udin, Pavel Kononov, Pei Geng, Saad Ghazai Alotaibi, Sehyung Kim, Sergei Ulasen, Sergio Escalera, Shanshan Zhang, Shuyuan Yang, Sunghwan Moon, Thomas B. Moeslund, Vasyl Shandyba, Vladimir Golovkin, Wei Dai, WonTaek Chung, Xinyu Liu, Yongqiang Zhu, Youngseo Kim, Yuan Li, Yuting Yang, Yuxuan Xiao, Zehua Cheng, Zhihao Li,
- Abstract要約: SoccerNet 2024の課題は、サッカーネットチームが主催する4年目のビデオ理解の課題を表している。
この課題は、サッカーにおける複数のテーマにまたがる研究を進めることを目的としており、放送ビデオ理解、フィールド理解、プレイヤー理解などが含まれる。
今年は、4つのビジョンベースのタスクが課題となっている。
- 参考スコア(独自算出の注目度): 152.8534707514927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team. These challenges aim to advance research across multiple themes in football, including broadcast video understanding, field understanding, and player understanding. This year, the challenges encompass four vision-based tasks. (1) Ball Action Spotting, focusing on precisely localizing when and which soccer actions related to the ball occur, (2) Dense Video Captioning, focusing on describing the broadcast with natural language and anchored timestamps, (3) Multi-View Foul Recognition, a novel task focusing on analyzing multiple viewpoints of a potential foul incident to classify whether a foul occurred and assess its severity, (4) Game State Reconstruction, another novel task focusing on reconstructing the game state from broadcast videos onto a 2D top-view map of the field. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.
- Abstract(参考訳): SoccerNet 2024の課題は、サッカーネットチームが主催する4年目のビデオ理解の課題を表している。
これらの課題は、ブロードキャストビデオ理解、フィールド理解、プレイヤー理解など、サッカーにおける複数のテーマにわたる研究を進めることを目的としている。
今年は、4つのビジョンベースのタスクが課題となっている。
1)ボールアクションスポッティングは,ボールに関連するサッカーのアクションの正確な位置決め,(2)映像キャプション,(2)自然言語とアンカータイムスタンプによる放送の描写,(3)ファウル認識,潜在的なファウルインシデントに対する複数の視点の分析と重症度の評価を目的とした新しいタスク,(4)ゲームステートリコンストラクション,そして,放送ビデオからフィールドの2次元トップビューマップへのゲーム状態の再構築に焦点を当てた新しいタスクである。
タスク、課題、リーダーボードの詳細はhttps://www.soccer-net.orgで、ベースラインと開発キットはhttps://github.com/SoccerNetで入手できる。
関連論文リスト
- Deep Understanding of Soccer Match Videos [20.783415560412003]
サッカーは世界中で最も人気のあるスポーツの1つであり、主要な試合で頻繁に放送される。
本システムでは, サッカーボール, 選手, 審判などの重要な物体を検知できる。
また、プレイヤーとボールの動きを追跡し、プレイヤーの番号を認識し、シーンを分類し、ゴールキックのようなハイライトを識別する。
論文 参考訳(メタデータ) (2024-07-11T05:54:13Z) - SoccerNet Game State Reconstruction: End-to-End Athlete Tracking and Identification on a Minimap [102.5232204867158]
我々は、ゲーム状態再構成のタスクを形式化し、フットボールビデオに焦点を当てた新しいゲーム状態再構成データセットである、サッカーネット-GSRを紹介する。
SoccerNet-GSRは、ピッチローカライゼーションとカメラキャリブレーションのための937万行のアノテートにより、30秒間の200の動画シーケンスで構成されている。
我々の実験は、GSRは挑戦的な新しい課題であり、将来の研究の場を開くことを示している。
論文 参考訳(メタデータ) (2024-04-17T12:53:45Z) - SoccerNet 2023 Challenges Results [165.5977813812761]
SoccerNet 2023 チャレンジ(英語: SoccerNet 2023 Challenge)は、サッカーネットチームが主催する3回目のビデオ理解チャレンジである。
この第3版では、課題は7つの視覚に基づくタスクから成っており、3つのテーマに分けられた。
論文 参考訳(メタデータ) (2023-09-12T07:03:30Z) - GOAL: A Challenging Knowledge-grounded Video Captioning Benchmark for
Real-time Soccer Commentary Generation [75.60413443783953]
我々は,KGVC(Knowledge-grounded Video Captioning)として新たなタスク設定を提案するための,8.9k以上のサッカービデオクリップ,22kの文,42kの知識トリプルのベンチマークであるGOALを提案する。
私たちのデータとコードはhttps://github.com/THU-KEG/goal.orgで公開されています。
論文 参考訳(メタデータ) (2023-03-26T08:43:36Z) - SoccerNet 2022 Challenges Results [167.6158475931228]
SoccerNet 2022 チャレンジ(英語: SoccerNet 2022 Challenge)は、サッカーネットチームが主催する2回目のビデオ理解チャレンジである。
2022年、課題は6つの視覚ベースのタスクで構成された。
昨年の課題と比較すると、タスク(1-2)は、より厳密な時間的アキュラシーを検討するために評価基準を再定義し、基礎となるデータやアノテーションを含むタスク(3-6)は新しくなった。
論文 参考訳(メタデータ) (2022-10-05T16:12:50Z) - SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of
Broadcast Soccer Videos [71.72665910128975]
SoccerNet-v2 は SoccerNet ビデオデータセット用の手動アノテーションの大規模なコーパスである。
SoccerNetの500の未トリミングサッカービデオの中で、約300万のアノテーションをリリースしています。
サッカーの領域における現在のタスクを拡張し、アクションスポッティング、カメラショットセグメンテーション、境界検出を含む。
論文 参考訳(メタデータ) (2020-11-26T16:10:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。