Model-in-the-Loop (MILO): Accelerating Multimodal AI Data Annotation with LLMs
- URL: http://arxiv.org/abs/2409.10702v2
- Date: Tue, 24 Sep 2024 05:00:07 GMT
- Title: Model-in-the-Loop (MILO): Accelerating Multimodal AI Data Annotation with LLMs
- Authors: Yifan Wang, David Stevens, Pranay Shah, Wenwen Jiang, Miao Liu, Xu Chen, Robert Kuo, Na Li, Boying Gong, Daniel Lee, Jiabo Hu, Ning Zhang, Bob Kamma,
- Abstract summary: We propose the Model-in-the-Loop (MILO) framework, which integrates AI/ML models into the annotation process.
Our research introduces a collaborative paradigm that leverages the strengths of both professional human annotators and large language models (LLMs)
Three empirical studies on multimodal data annotation demonstrate MILO's efficacy in reducing handling time, improving data quality, and enhancing annotator experiences.
- Score: 19.331803578031188
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growing demand for AI training data has transformed data annotation into a global industry, but traditional approaches relying on human annotators are often time-consuming, labor-intensive, and prone to inconsistent quality. We propose the Model-in-the-Loop (MILO) framework, which integrates AI/ML models into the annotation process. Our research introduces a collaborative paradigm that leverages the strengths of both professional human annotators and large language models (LLMs). By employing LLMs as pre-annotation and real-time assistants, and judges on annotator responses, MILO enables effective interaction patterns between human annotators and LLMs. Three empirical studies on multimodal data annotation demonstrate MILO's efficacy in reducing handling time, improving data quality, and enhancing annotator experiences. We also introduce quality rubrics for flexible evaluation and fine-grained feedback on open-ended annotations. The MILO framework has implications for accelerating AI/ML development, reducing reliance on human annotation alone, and promoting better alignment between human and machine values.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)
MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.
It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
Membership inference attacks (MIAs) aim to determine whether a specific instance was part of a target model's training data.
Applying MIAs to large language models (LLMs) presents unique challenges due to the massive scale of pre-training data and the ambiguous nature of membership.
We introduce EM-MIA, a novel MIA method for LLMs that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm.
arXiv Detail & Related papers (2024-10-10T03:31:16Z) - Seeing Eye to AI: Human Alignment via Gaze-Based Response Rewards for Large Language Models [46.09562860220433]
We introduce GazeReward, a novel framework that integrates implicit feedback -- and specifically eye-tracking (ET) data -- into the Reward Model (RM)
Our approach significantly improves the accuracy of the RM on established human preference datasets.
arXiv Detail & Related papers (2024-10-02T13:24:56Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - The RealHumanEval: Evaluating Large Language Models' Abilities to Support Programmers [44.28269395385471]
We study whether gains on existing benchmarks or more preferred LLM responses translate to programmer productivity when coding with LLMs.
We introduce RealHumanEval, a web interface to measure the ability of LLMs to assist programmers.
Despite static benchmarks not incorporating humans-in-the-loop, we find that improvements in benchmark performance lead to increased programmer productivity.
arXiv Detail & Related papers (2024-04-03T15:20:57Z) - Human-AI Collaborative Essay Scoring: A Dual-Process Framework with LLMs [13.262711792955377]
This study explores the effectiveness of Large Language Models (LLMs) for automated essay scoring.
We propose an open-source LLM-based AES system, inspired by the dual-process theory.
We find that our system not only automates the grading process but also enhances the performance and efficiency of human graders.
arXiv Detail & Related papers (2024-01-12T07:50:10Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale.
Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline.
arXiv Detail & Related papers (2023-10-24T08:56:49Z) - Aligning Large Language Models through Synthetic Feedback [43.84431341195111]
We propose a novel alignment learning framework with synthetic feedback not dependent on extensive human annotations.
In human evaluation, our model is preferred to Alpaca and Dolly-v2, 55.0% and 58.5% of the time, respectively.
arXiv Detail & Related papers (2023-05-23T06:41:16Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.