論文の概要: Less is More: A Simple yet Effective Token Reduction Method for Efficient Multi-modal LLMs
- arxiv url: http://arxiv.org/abs/2409.10994v2
- Date: Sat, 28 Sep 2024 14:04:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 20:13:03.815394
- Title: Less is More: A Simple yet Effective Token Reduction Method for Efficient Multi-modal LLMs
- Title(参考訳): より少ない: 効率的なマルチモーダルLCMのための簡易かつ効果的なトーケン削減法
- Authors: Dingjie Song, Wenjun Wang, Shunian Chen, Xidong Wang, Michael Guan, Benyou Wang,
- Abstract要約: MLLMの効率向上を目的とした新しい手法であるTRIM(CLIP Metric)を導入する。
視覚質問応答(VQA)タスクにおける人間の注意パターンにインスパイアされたTRIMは、画像トークンの選択と縮小について、新たな視点を示す。
その結果,一貫した性能を維持しながら計算オーバーヘッドを著しく低減した。
- 参考スコア(独自算出の注目度): 14.533229831531168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Multimodal Large Language Models (MLLMs) has led to remarkable performances across various domains. However, this progress is accompanied by a substantial surge in the resource consumption of these models. We address this pressing issue by introducing a new approach, Token Reduction using CLIP Metric (TRIM), aimed at improving the efficiency of MLLMs without sacrificing their performance. Inspired by human attention patterns in Visual Question Answering (VQA) tasks, TRIM presents a fresh perspective on the selection and reduction of image tokens. The TRIM method has been extensively tested across 12 datasets, and the results demonstrate a significant reduction in computational overhead while maintaining a consistent level of performance. This research marks a critical stride in efficient MLLM development, promoting greater accessibility and sustainability of high-performing models.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)の急速な進歩は、様々な領域で顕著なパフォーマンスをもたらした。
しかし、この進歩はこれらのモデルの資源消費が大幅に増加したことに伴う。
MLLMの効率向上を目的とした新しいアプローチであるTRIM(CLIP Metric)を導入し,その性能を損なうことなくその効率向上を図る。
視覚質問応答(VQA)タスクにおける人間の注意パターンにインスパイアされたTRIMは、画像トークンの選択と縮小について、新たな視点を示す。
TRIM法は12のデータセットにまたがって広範囲にテストされており、その結果は、一貫した性能を維持しながら、計算オーバーヘッドを大幅に削減したことを示している。
本研究はMLLMの効率的な開発において重要な一歩を踏み出し,高性能モデルのアクセシビリティ向上と持続可能性向上に寄与する。
関連論文リスト
- Learning Free Token Reduction for Multi-Modal LLM [3.4026156483879517]
VLM(Vision-Language Models)は、様々なマルチモーダルタスクにおいて顕著な成功を収めている。
しかし、それらの実践的な展開は、しばしば高い計算コストと長期の推論時間によって制約される。
本稿では,空間次元と時間次元の両方で動作するトークン圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2025-01-29T02:52:32Z) - Visual RAG: Expanding MLLM visual knowledge without fine-tuning [5.341192792319891]
本稿では、文脈から学習するMLLMの機能と検索機構を相乗的に組み合わせたVisual RAGを紹介する。
このようにして、得られたシステムは、トレーニングデータから抽出した知識に限らず、微調整なしで、迅速かつ容易に更新できる。
モデル画像分類性能を改善するための計算コストを大幅に削減し、トレーニングされていない新しい視覚領域やタスクにモデル知識を拡大する。
論文 参考訳(メタデータ) (2025-01-18T17:43:05Z) - FOLDER: Accelerating Multi-modal Large Language Models with Enhanced Performance [7.889590793589825]
視覚トークン列の長さを削減するために設計された,シンプルで効果的なプラグアンドプレイモジュールであるFOLDERを紹介する。
我々は、異なる還元戦略によってもたらされた情報損失を分析し、視覚的冗長性を取り除きながら鍵情報を保存するFOLDERを開発した。
FOLDERは、オリジナルのモデルと同等またはそれ以上のパフォーマンスを達成すると同時に、最大70%のビジュアルトークンを削除することで、複雑さを劇的に低減する。
論文 参考訳(メタデータ) (2025-01-05T03:28:45Z) - LLMs are Also Effective Embedding Models: An In-depth Overview [40.53941563464671]
大規模言語モデル(LLM)は、様々なタスクで最先端のパフォーマンスを達成することによって、自然言語処理に革命をもたらした。
近年、埋め込みモデルとしての有効性が注目され、ELMoやBERTのような従来のエンコーダのみのモデルから、GPT、LLaMA、Mistralのようなデコーダのみの大規模LLMへとパラダイムシフトした。
論文 参考訳(メタデータ) (2024-12-17T06:48:24Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
既存のMultimoal Large Language Models (MLLM) における視覚トークンの過剰使用は、しばしば明らかな冗長性を示し、非常に高価な計算をもたらす。
DyVTE(Dynamic visual-token exit)と呼ばれるMLLMの効率を改善するための簡易かつ効果的な手法を提案する。
DyVTEは軽量なハイパーネットワークを使用して、テキストトークンの状態を認識し、特定のレイヤの後にすべてのビジュアルトークンを削除する。
論文 参考訳(メタデータ) (2024-11-29T11:24:23Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
本稿では,新しいモデルレベルの判断自由自己改善フレームワークを提案する。
本手法では,検証ループにおけるMLLMの必要性を解消しつつ,制御されたフィードバック機構を用いる。
計算要求が大幅に小さく、精度とリコールの精度が向上する。
論文 参考訳(メタデータ) (2024-11-26T00:44:37Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
自己回帰型大規模言語モデル(LLaMa, GPT)は、言語理解と生成において顕著な成功を収めている。
発生時に発生する過負荷を軽減するため、いくつかの早期退避および層下降戦略が提案されている。
本稿では,入力適応型フィードフォワードスキップ戦略であるFFN-SkipLLMを提案する。
論文 参考訳(メタデータ) (2024-04-05T02:35:43Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [49.32669226551026]
本稿では,LVLMのための簡易かつ効果的なトレーニング戦略であるMoE-Tuningを提案する。
MoE-LLaVAはMoEベースのスパースLVLMアーキテクチャであり、ルータを通じてトップkの専門家のみをユニークに活性化する。
様々な視覚的理解と物体幻覚のベンチマークにおいて,MoE-LLaVAの顕著な性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-01-29T08:13:40Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。