論文の概要: A Comprehensive Evaluation of Quantized Instruction-Tuned Large Language Models: An Experimental Analysis up to 405B
- arxiv url: http://arxiv.org/abs/2409.11055v1
- Date: Tue, 17 Sep 2024 10:31:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 17:05:36.333182
- Title: A Comprehensive Evaluation of Quantized Instruction-Tuned Large Language Models: An Experimental Analysis up to 405B
- Title(参考訳): 量子命令型大規模言語モデルの総合的評価:最大405Bまでの実験的検討
- Authors: Jemin Lee, Sihyeong Park, Jinse Kwon, Jihun Oh, Yongin Kwon,
- Abstract要約: 本稿では、7Bから405Bのモデルにおける命令調整型LLMの性能を評価する。
我々は6つのタスクタイプ(常識Q&A、知識と言語理解、指示追従、幻覚検出、数学、対話)のパフォーマンスを評価する。
- 参考スコア(独自算出の注目度): 11.832907585157638
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Prior research works have evaluated quantized LLMs using limited metrics such as perplexity or a few basic knowledge tasks and old datasets. Additionally, recent large-scale models such as Llama 3.1 with up to 405B have not been thoroughly examined. This paper evaluates the performance of instruction-tuned LLMs across various quantization methods (GPTQ, AWQ, SmoothQuant, and FP8) on models ranging from 7B to 405B. Using 13 benchmarks, we assess performance across six task types: commonsense Q\&A, knowledge and language understanding, instruction following, hallucination detection, mathematics, and dialogue. Our key findings reveal that (1) quantizing a larger LLM to a similar size as a smaller FP16 LLM generally performs better across most benchmarks, except for hallucination detection and instruction following; (2) performance varies significantly with different quantization methods, model size, and bit-width, with weight-only methods often yielding better results in larger models; (3) task difficulty does not significantly impact accuracy degradation due to quantization; and (4) the MT-Bench evaluation method has limited discriminatory power among recent high-performing LLMs.
- Abstract(参考訳): 従来の研究では、パープレキシティやいくつかの基本的な知識タスクや古いデータセットといった限られたメトリクスを使用して、定量化したLLMを評価してきた。
さらに、Llama 3.1のような405Bまでの大規模モデルも十分に検討されていない。
本稿では、7Bから405Bまでのモデルにおいて、様々な量子化手法(GPTQ, AWQ, SmoothQuant, FP8)における命令調整LDMの性能を評価する。
13のベンチマークを用いて、コモンセンスQ&A、知識と言語理解、指示追従、幻覚検出、数学、対話の6つのタスクタイプのパフォーマンスを評価する。
その結果,(1)より大型のLDMを小型のFP16 LLMと同等の大きさに定量化することは,幻覚検出や命令以外のほとんどのベンチマークにおいて,一般的には性能が向上すること,(2)重みのみの手法が大きなモデルにおいて良好な結果をもたらすこと,(3)タスクの難易度が量子化による精度劣化に大きく影響しないこと,(4)MT-Bench評価手法は近年の高性能LCMにおいて,識別力に限界があること,などが判明した。
関連論文リスト
- UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions [10.28688988951815]
UBENCHは、大きな言語モデルを評価するためのベンチマークである。
これには、知識、言語、理解、推論能力に関する3,978の質問が含まれている。
また,15個のLPMの信頼性を評価し,GLM4が最も優れていることを発見した。
論文 参考訳(メタデータ) (2024-06-18T16:50:38Z) - Evaluating the Generalization Ability of Quantized LLMs: Benchmark, Analysis, and Toolbox [46.39670209441478]
大規模言語モデル(LLM)は、複数のシナリオでエキサイティングな進歩を見せている。
メモリフットプリントと推論コストを削減する効果的な方法として、量子化は低ビット幅での性能劣化にも直面する。
この研究は、評価システム、詳細な分析、一般的なツールボックスを含む、この研究トピックのための包括的なベンチマークスイートを提供する。
論文 参考訳(メタデータ) (2024-06-15T12:02:14Z) - The Impact of Quantization on Retrieval-Augmented Generation: An Analysis of Small LLMs [2.6968321526169503]
学習後の量子化は、Large Language Models (LLM) の計算需要を減らすが、その能力の一部を弱める可能性がある。
本稿では、量子化がより小さなLLMの検索強化生成(RAG)能力にどのように影響するかを考察する。
この結果から, 7B LLM がそのタスクをうまく実行した場合, 量子化ではその性能や長文推論能力が損なわれないことが判明した。
論文 参考訳(メタデータ) (2024-06-10T08:23:52Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - Quantifying the Capabilities of LLMs across Scale and Precision [12.879551933541345]
本研究では,モデルスケールと量子化がインストラクションモデルの性能に及ぼす影響について検討する。
より大規模なモデルでは、精度の低下に対して例外的なレジリエンスを示し、4ビット量子化においても高い精度を維持することができることを示す。
論文 参考訳(メタデータ) (2024-05-06T03:42:34Z) - An Empirical Study of LLaMA3 Quantization: From LLMs to MLLMs [54.91212829143966]
本研究では、LLaMA3の低ビット幅への量子化能力について検討する。
我々は,LLaMA3の1-8ビットおよび多種多様なデータセットに対して,学習後量子化とLLaMA3のLoRAファインタニング法を10種類評価した。
実験の結果,LLaMA3は言語的・視覚的文脈において,相変わらず非言語的劣化をきたしていることが明らかとなった。
論文 参考訳(メタデータ) (2024-04-22T10:03:03Z) - A Comprehensive Evaluation of Quantization Strategies for Large Language Models [42.03804933928227]
大規模言語モデル(LLM)におけるパラメータの数を増やすことで、ダウンストリームタスクのパフォーマンスが向上するが、計算とメモリコストが上昇する。
モデルウェイトやアクティベーションに必要なビットを最小性能で削減する量子化技術が普及している。
本稿では,知識とキャパシティ,(2)アライメント,(3)効率の3つの重要な次元からなる構造化評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-26T17:45:36Z) - BLESS: Benchmarking Large Language Models on Sentence Simplification [55.461555829492866]
我々は、テキスト単純化(TS)タスク上で、最新の最先端の大規模言語モデル(LLM)のパフォーマンスベンチマークであるBLESSを紹介する。
異なるドメイン(Wikipedia、ニュース、医療)の3つのテストセットに対して、サイズ、アーキテクチャ、事前学習方法、アクセシビリティの異なる44のモデルを評価する。
評価の結果,最高のLSMはTSのトレーニングを受けていないにもかかわらず,最先端のTSベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2023-10-24T12:18:17Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
本研究の目的は,LLMを小言語モデルと区別する重要な特徴である現象能力に対する量子化の影響を検討することである。
実験により、これらの創発能力は4ビット量子化モデルに残っており、2ビットモデルは深刻な性能劣化に直面していることがわかった。
低ビットモデルの性能向上のために,(1) 部品(またはサブ構造)が量子化に敏感である場合の微視的影響解析,(2) モデル微視化による性能補償の2つの実験を行った。
論文 参考訳(メタデータ) (2023-07-16T15:11:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。