HMF: A Hybrid Multi-Factor Framework for Dynamic Intraoperative Hypotension Prediction
- URL: http://arxiv.org/abs/2409.11064v1
- Date: Tue, 17 Sep 2024 10:46:41 GMT
- Title: HMF: A Hybrid Multi-Factor Framework for Dynamic Intraoperative Hypotension Prediction
- Authors: Mingyue Cheng, Jintao Zhang, Zhiding Liu, Chunli Liu, Yanhu Xie,
- Abstract summary: Intraoperative hypotension (IOH) prediction using Mean Arterial Pressure (MAP) is a critical research area with significant implications for patient outcomes during surgery.
Existing approaches predominantly employ static modeling paradigms that overlook the dynamic nature of physiological signals.
We introduce a novel Hybrid Multi-Factor (HMF) framework that reformulates IOH prediction as a blood pressure forecasting task.
- Score: 2.7807763048110337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intraoperative hypotension (IOH) prediction using Mean Arterial Pressure (MAP) is a critical research area with significant implications for patient outcomes during surgery. However, existing approaches predominantly employ static modeling paradigms that overlook the dynamic nature of physiological signals. In this paper, we introduce a novel Hybrid Multi-Factor (HMF) framework that reformulates IOH prediction as a blood pressure forecasting task. Our framework leverages a Transformer encoder, specifically designed to effectively capture the temporal evolution of MAP series through a patch-based input representation, which segments the input physiological series into informative patches for accurate analysis. To address the challenges of distribution shift in physiological series, our approach incorporates two key innovations: (1) Symmetric normalization and de-normalization processes help mitigate distributional drift in statistical properties, thereby ensuring the model's robustness across varying conditions, and (2) Sequence decomposition, which disaggregates the input series into trend and seasonal components, allowing for a more precise modeling of inherent sequence dependencies. Extensive experiments conducted on two real-world datasets demonstrate the superior performance of our approach compared to competitive baselines, particularly in capturing the nuanced variations in input series that are crucial for accurate IOH prediction.
Related papers
- Towards Robust Multimodal Physiological Foundation Models: Handling Arbitrary Missing Modalities [9.785262633953794]
Physio Omni is a foundation model for multimodal physiological signal analysis.
It trains a decoupled multimodal tokenizer, enabling masked signal pre-training.
It achieves state-of-the-art performance while maintaining strong robustness to missing modalities.
arXiv Detail & Related papers (2025-04-28T09:00:04Z) - Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction [0.0]
Graph Neural Networks (GNNs) exploit the natural graph structure of the mesh obtained by the Finite Volume (FV) discretization.
Our experimental validation framework yields promising results, confirming our method as a valid alternative that overcomes the curse of dimensionality.
arXiv Detail & Related papers (2024-10-04T09:39:15Z) - FUSE: Fast Unified Simulation and Estimation for PDEs [11.991297011923004]
We argue that solving both problems within the same framework can lead to consistent gains in accuracy and robustness.
We present the capabilities of the proposed methodology for predicting continuous and discrete biomarkers in full-body haemodynamics simulations.
arXiv Detail & Related papers (2024-05-23T13:37:26Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - MPRE: Multi-perspective Patient Representation Extractor for Disease
Prediction [3.914545513460964]
We propose the Multi-perspective Patient Representation Extractor (MPRE) for disease prediction.
Specifically, we propose Frequency Transformation Module (FTM) to extract the trend and variation information of dynamic features.
In the 2D Multi-Extraction Network (2D MEN), we form the 2D temporal tensor based on trend and variation.
We also propose the First-Order Difference Attention Mechanism (FODAM) to calculate the contributions of differences in adjacent variations to the disease diagnosis.
arXiv Detail & Related papers (2024-01-01T13:52:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Score dynamics: scaling molecular dynamics with picoseconds timestep via
conditional diffusion model [5.39025059364831]
We propose score dynamics (SD), a framework for learning accelerated evolution operators with large timesteps from molecular-dynamics simulations.
We construct graph neural network based score dynamics models of realistic molecular systems that are evolved with 10ps timesteps.
Our current SD implementation is about two orders of magnitude faster than the MD counterpart for the systems studied in this work.
arXiv Detail & Related papers (2023-10-02T22:29:45Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Latent Temporal Flows for Multivariate Analysis of Wearables Data [0.9990687944474738]
We introduce Latent Temporal Flows, a method for multivariate time-series modeling tailored to this setting.
We show that the proposed method consistently outperforms the state-of-the-art in multi-step forecasting benchmarks.
arXiv Detail & Related papers (2022-10-14T02:54:34Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Continuous Forecasting via Neural Eigen Decomposition of Stochastic
Dynamics [47.82509795873254]
We introduce the Neural Eigen-SDE (NESDE) algorithm for sequential prediction with sparse observations and adaptive dynamics.
NESDE applies eigen-decomposition to the dynamics model to allow efficient frequent predictions given sparse observations.
We are the first to provide a patient-adapted prediction for blood coagulation following Heparin dosing in the MIMIC-IV dataset.
arXiv Detail & Related papers (2022-01-31T22:16:50Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems [12.319812075685956]
We combine the advances in both deep generative models and state space model (SSM) to come up with a novel, data-driven deep probabilistic sequence model.
Specially, we follow the popular encoder-decoder generative structure to build the recurrent neural networks (RNN) assisted variational sequence model.
In order to alleviate the issue of inconsistency between training and predicting, we (i) propose using a hybrid output as input at next time step, which brings training and predicting into alignment.
arXiv Detail & Related papers (2021-06-03T23:41:11Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
We present a temporal deep learning model to perform bidirectional representation learning on EHR sequences to predict depression.
The model generated the highest increases of precision-recall area under the curve (PRAUC) from 0.70 to 0.76 in depression prediction compared to the best baseline model.
arXiv Detail & Related papers (2020-09-26T17:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.