論文の概要: Multi-Cohort Framework with Cohort-Aware Attention and Adversarial Mutual-Information Minimization for Whole Slide Image Classification
- arxiv url: http://arxiv.org/abs/2409.11119v1
- Date: Tue, 17 Sep 2024 12:18:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 16:55:21.965228
- Title: Multi-Cohort Framework with Cohort-Aware Attention and Adversarial Mutual-Information Minimization for Whole Slide Image Classification
- Title(参考訳): 全スライド画像分類のためのコホート認識と対向的相互情報最小化によるマルチコホートフレームワーク
- Authors: Sharon Peled, Yosef E. Maruvka, Moti Freiman,
- Abstract要約: 本稿では,腫瘍の多様性を生かしたマルチコホートWSI解析手法を提案する。
我々はCohort-Aware Attentionモジュールを導入し、共有および腫瘍特異的な病理パターンのキャプチャを可能にした。
また,コホート不均衡を緩和し,偏りのない学習を促進するために,階層的なサンプルバランス戦略を開発する。
- 参考スコア(独自算出の注目度): 3.1406146587437904
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Whole Slide Images (WSIs) are critical for various clinical applications, including histopathological analysis. However, current deep learning approaches in this field predominantly focus on individual tumor types, limiting model generalization and scalability. This relatively narrow focus ultimately stems from the inherent heterogeneity in histopathology and the diverse morphological and molecular characteristics of different tumors. To this end, we propose a novel approach for multi-cohort WSI analysis, designed to leverage the diversity of different tumor types. We introduce a Cohort-Aware Attention module, enabling the capture of both shared and tumor-specific pathological patterns, enhancing cross-tumor generalization. Furthermore, we construct an adversarial cohort regularization mechanism to minimize cohort-specific biases through mutual information minimization. Additionally, we develop a hierarchical sample balancing strategy to mitigate cohort imbalances and promote unbiased learning. Together, these form a cohesive framework for unbiased multi-cohort WSI analysis. Extensive experiments on a uniquely constructed multi-cancer dataset demonstrate significant improvements in generalization, providing a scalable solution for WSI classification across diverse cancer types. Our code for the experiments is publicly available at <link>.
- Abstract(参考訳): ホイルスライド画像(WSI)は病理組織学的解析を含む様々な臨床応用に重要である。
しかし、この分野における現在のディープラーニングアプローチは、主に個々の腫瘍タイプ、モデルの一般化と拡張性を制限することに焦点を当てている。
この比較的狭い焦点は、最終的に、組織学的に固有の異質性と、異なる腫瘍の様々な形態学的および分子的特徴に由来する。
そこで本研究では,腫瘍の多様性を活かしたマルチコホートWSI解析手法を提案する。
コホート・アウェア・アテンション(Cohort-Aware Attention)モジュールを導入し,腫瘍特異的および腫瘍特異的な病理パターンを捕捉し,腫瘍間の一般化を促進する。
さらに,相互情報の最小化により,コホート固有のバイアスを最小限に抑えるために,逆コホート正規化機構を構築する。
さらに,コホート不均衡を緩和し,偏りのない学習を促進するために,階層的なサンプルバランス戦略を開発する。
これらを合わせて、非バイアス多重コホートWSI分析のための凝集性フレームワークを形成する。
独自に構築されたマルチ癌データセットに対する大規模な実験は、一般化の大幅な改善を示し、様々ながんタイプにまたがるWSI分類のためのスケーラブルなソリューションを提供する。
実験のコードはlink>で公開されています。
関連論文リスト
- Heterogeneous graph attention network improves cancer multiomics integration [8.729516996214537]
癌診断を改善するため,オミクス統合のための異種グラフアテンションネットワーク(HeteroGATomics)を導入する。
3つのがんマルチオミクスデータセットの実験は、HeteroGATomicsのがん診断における優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-08-05T22:01:13Z) - Unified Modeling Enhanced Multimodal Learning for Precision Neuro-Oncology [8.802214988309684]
ヒストロジーとゲノム学の両モードの共通性と相補的な特徴を利用する階層的アテンション構造を導入する。
本手法は,グリオーマ診断および予後タスクにおける従来の最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-06-11T09:06:41Z) - MV-Swin-T: Mammogram Classification with Multi-view Swin Transformer [0.257133335028485]
マンモグラフィ画像分類における課題に対処するために,トランスフォーマーに基づく革新的なマルチビューネットワークを提案する。
提案手法では,ウィンドウベースの動的アテンションブロックを導入し,マルチビュー情報の効果的な統合を容易にする。
論文 参考訳(メタデータ) (2024-02-26T04:41:04Z) - IGCN: Integrative Graph Convolution Networks for patient level insights and biomarker discovery in multi-omics integration [2.0971479389679337]
本稿では,癌分子サブタイプとバイオメディカル分類のための新しい統合ニューラルネットワークアプローチを提案する。
IGCNは、特定のクラスを予測するために患者に対してどのタイプのオミクスがより強調されるかを特定することができる。
IGCNは、様々なオミクスデータタイプから重要なバイオマーカーを特定できる。
論文 参考訳(メタデータ) (2024-01-31T05:52:11Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Multi-Domain Balanced Sampling Improves Out-of-Distribution
Generalization of Chest X-ray Pathology Prediction Models [67.2867506736665]
そこで本研究では, 簡単なバッチサンプリング手法を用いた胸部X線像の分布外一般化法を提案する。
複数のトレーニングデータセット間のバランスの取れたサンプリングは、バランスを取らずにトレーニングされたベースラインモデルよりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2021-12-27T15:28:01Z) - Cohort Bias Adaptation in Aggregated Datasets for Lesion Segmentation [0.8466401378239363]
マルチソースデータセット間でコホートバイアスを学習し,考慮するための一般化されたアフィン条件付けフレームワークを提案する。
我々は,コホートバイアス適応法により,プールしたデータセット上でのネットワークの性能が向上することを示す。
論文 参考訳(メタデータ) (2021-08-02T08:32:57Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。