Multi-Cohort Framework with Cohort-Aware Attention and Adversarial Mutual-Information Minimization for Whole Slide Image Classification
- URL: http://arxiv.org/abs/2409.11119v1
- Date: Tue, 17 Sep 2024 12:18:00 GMT
- Title: Multi-Cohort Framework with Cohort-Aware Attention and Adversarial Mutual-Information Minimization for Whole Slide Image Classification
- Authors: Sharon Peled, Yosef E. Maruvka, Moti Freiman,
- Abstract summary: We propose a novel approach for multi-cohort WSI analysis, designed to leverage the diversity of different tumor types.
We introduce a Cohort-Aware Attention module, enabling the capture of both shared and tumor-specific pathological patterns.
We also develop a hierarchical sample balancing strategy to mitigate cohort imbalances and promote unbiased learning.
- Score: 3.1406146587437904
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Whole Slide Images (WSIs) are critical for various clinical applications, including histopathological analysis. However, current deep learning approaches in this field predominantly focus on individual tumor types, limiting model generalization and scalability. This relatively narrow focus ultimately stems from the inherent heterogeneity in histopathology and the diverse morphological and molecular characteristics of different tumors. To this end, we propose a novel approach for multi-cohort WSI analysis, designed to leverage the diversity of different tumor types. We introduce a Cohort-Aware Attention module, enabling the capture of both shared and tumor-specific pathological patterns, enhancing cross-tumor generalization. Furthermore, we construct an adversarial cohort regularization mechanism to minimize cohort-specific biases through mutual information minimization. Additionally, we develop a hierarchical sample balancing strategy to mitigate cohort imbalances and promote unbiased learning. Together, these form a cohesive framework for unbiased multi-cohort WSI analysis. Extensive experiments on a uniquely constructed multi-cancer dataset demonstrate significant improvements in generalization, providing a scalable solution for WSI classification across diverse cancer types. Our code for the experiments is publicly available at <link>.
Related papers
- Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach [36.92842246372894]
Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN) is a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples.
By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability.
arXiv Detail & Related papers (2025-03-29T02:14:05Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease.
We present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention.
Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance.
arXiv Detail & Related papers (2025-03-01T07:02:30Z) - Heterogeneous graph attention network improves cancer multiomics integration [8.729516996214537]
We introduce a Heterogeneous Graph ATtention network for omics integration (HeteroGATomics) to improve cancer diagnosis.
Experiments on three cancer multiomics datasets demonstrate HeteroGATomics' superior performance in cancer diagnosis.
arXiv Detail & Related papers (2024-08-05T22:01:13Z) - Unified Modeling Enhanced Multimodal Learning for Precision Neuro-Oncology [8.802214988309684]
We introduce a hierarchical attention structure to leverage shared and complementary features of both modalities of histology and genomics.
Our method surpasses previous state-of-the-art approaches in glioma diagnosis and prognosis tasks.
arXiv Detail & Related papers (2024-06-11T09:06:41Z) - MV-Swin-T: Mammogram Classification with Multi-view Swin Transformer [0.257133335028485]
We propose an innovative multi-view network based on transformers to address challenges in mammographic image classification.
Our approach introduces a novel shifted window-based dynamic attention block, facilitating the effective integration of multi-view information.
arXiv Detail & Related papers (2024-02-26T04:41:04Z) - IGCN: Integrative Graph Convolution Networks for patient level insights and biomarker discovery in multi-omics integration [2.0971479389679337]
We introduce a novel integrative neural network approach for cancer molecular subtype and biomedical classification applications.
IGCN can identify which types of omics receive more emphasis for each patient to predict a certain class.
IGCN has the capability to pinpoint significant biomarkers from a range of omics data types.
arXiv Detail & Related papers (2024-01-31T05:52:11Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Multi-Domain Balanced Sampling Improves Out-of-Distribution
Generalization of Chest X-ray Pathology Prediction Models [67.2867506736665]
We propose an idea for out-of-distribution generalization of chest X-ray pathologies that uses a simple balanced batch sampling technique.
We observed that balanced sampling between the multiple training datasets improves the performance over baseline models trained without balancing.
arXiv Detail & Related papers (2021-12-27T15:28:01Z) - Cohort Bias Adaptation in Aggregated Datasets for Lesion Segmentation [0.8466401378239363]
We propose a generalized affine conditioning framework to learn and account for cohort biases across multi-source datasets.
We show that our cohort bias adaptation method improves performance of the network on pooled datasets.
arXiv Detail & Related papers (2021-08-02T08:32:57Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.