Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry
- URL: http://arxiv.org/abs/2409.11350v1
- Date: Tue, 17 Sep 2024 16:53:47 GMT
- Title: Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry
- Authors: Lauren M. Zuromski, Jacob Durtschi, Aimal Aziz, Jeffrey Chumley, Mark Dewey, Paul English, Muir Morrison, Keith Simmon, Blaine Whipple, Brendan O'Fallon, David P. Ng,
- Abstract summary: Machine-learning (ML) models in flow have the potential to reduce error rates, increase efficiency, and boost the efficiency of clinical labs.
Few studies have described the clinical deployment of such models.
We describe an ML model for detection of Acute Myeloid Leukemia (AML) along with the infrastructure supporting clinical implementation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine-learning (ML) models in flow cytometry have the potential to reduce error rates, increase reproducibility, and boost the efficiency of clinical labs. While numerous ML models for flow cytometry data have been proposed, few studies have described the clinical deployment of such models. Realizing the potential gains of ML models in clinical labs requires not only an accurate model, but infrastructure for automated inference, error detection, analytics and monitoring, and structured data extraction. Here, we describe an ML model for detection of Acute Myeloid Leukemia (AML), along with the infrastructure supporting clinical implementation. Our infrastructure leverages the resilience and scalability of the cloud for model inference, a Kubernetes-based workflow system that provides model reproducibility and resource management, and a system for extracting structured diagnoses from full-text reports. We also describe our model monitoring and visualization platform, an essential element for ensuring continued model accuracy. Finally, we present a post-deployment analysis of impacts on turn-around time and compare production accuracy to the original validation statistics.
Related papers
- Evaluating Machine Learning Models against Clinical Protocols for Enhanced Interpretability and Continuity of Care [39.58317527488534]
In clinical practice, decision-making relies heavily on established protocols, often formalised as rules.
Despite the growing number of Machine Learning applications, their adoption into clinical practice remains limited.
We propose metrics to assess the accuracy of ML models with respect to the established protocol.
arXiv Detail & Related papers (2024-11-05T13:50:09Z) - Stronger Baseline Models -- A Key Requirement for Aligning Machine Learning Research with Clinical Utility [0.0]
Well-known barriers exist when attempting to deploy Machine Learning models in high-stakes, clinical settings.
We show empirically that including stronger baseline models in evaluations has important downstream effects.
We propose some best practices that will enable practitioners to more effectively study and deploy ML models in clinical settings.
arXiv Detail & Related papers (2024-09-18T16:38:37Z) - Machine Learning Data Suitability and Performance Testing Using Fault
Injection Testing Framework [0.0]
This paper presents the Fault Injection for Undesirable Learning in input Data (FIUL-Data) testing framework.
Data mutators explore vulnerabilities of ML systems against the effects of different fault injections.
This paper evaluates the framework using data from analytical chemistry, comprising retention time measurements of anti-sense oligonucleotides.
arXiv Detail & Related papers (2023-09-20T12:58:35Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
We introduce an innovative projections-based method that seamlessly integrates clinical expertise as domain constraints.
We measure the distance of corrected data from the constraints defining a healthy range of patient data, resulting in a unique predictive metric we term as "trust-scores"
We show an AUROC of 0.865 and a precision of 0.922, that surpasses conventional ML models without such projections.
arXiv Detail & Related papers (2023-08-21T15:14:49Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
We systematically assess the outcome of widely used, state-of-the-art SSM tools.
We propose validation frameworks for anatomical landmark/measurement inference and lesion screening.
ShapeWorks and Deformetrica shape models are found to capture clinically relevant population-level variability.
arXiv Detail & Related papers (2020-09-07T03:51:35Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.