Stronger Baseline Models -- A Key Requirement for Aligning Machine Learning Research with Clinical Utility
- URL: http://arxiv.org/abs/2409.12116v1
- Date: Wed, 18 Sep 2024 16:38:37 GMT
- Title: Stronger Baseline Models -- A Key Requirement for Aligning Machine Learning Research with Clinical Utility
- Authors: Nathan Wolfrath, Joel Wolfrath, Hengrui Hu, Anjishnu Banerjee, Anai N. Kothari,
- Abstract summary: Well-known barriers exist when attempting to deploy Machine Learning models in high-stakes, clinical settings.
We show empirically that including stronger baseline models in evaluations has important downstream effects.
We propose some best practices that will enable practitioners to more effectively study and deploy ML models in clinical settings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) research has increased substantially in recent years, due to the success of predictive modeling across diverse application domains. However, well-known barriers exist when attempting to deploy ML models in high-stakes, clinical settings, including lack of model transparency (or the inability to audit the inference process), large training data requirements with siloed data sources, and complicated metrics for measuring model utility. In this work, we show empirically that including stronger baseline models in healthcare ML evaluations has important downstream effects that aid practitioners in addressing these challenges. Through a series of case studies, we find that the common practice of omitting baselines or comparing against a weak baseline model (e.g. a linear model with no optimization) obscures the value of ML methods proposed in the research literature. Using these insights, we propose some best practices that will enable practitioners to more effectively study and deploy ML models in clinical settings.
Related papers
- Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry [0.0]
Machine-learning (ML) models in flow have the potential to reduce error rates, increase efficiency, and boost the efficiency of clinical labs.
Few studies have described the clinical deployment of such models.
We describe an ML model for detection of Acute Myeloid Leukemia (AML) along with the infrastructure supporting clinical implementation.
arXiv Detail & Related papers (2024-09-17T16:53:47Z) - Measuring Variable Importance in Individual Treatment Effect Estimation with High Dimensional Data [35.104681814241104]
Causal machine learning (ML) promises to provide powerful tools for estimating individual treatment effects.
ML methods still face the significant challenge of interpretability, which is crucial for medical applications.
We propose a new algorithm based on the Conditional Permutation Importance (CPI) method for statistically rigorous variable importance assessment.
arXiv Detail & Related papers (2024-08-23T11:44:07Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - CogBench: a large language model walks into a psychology lab [12.981407327149679]
This paper introduces CogBench, a benchmark that includes ten behavioral metrics derived from seven cognitive psychology experiments.
We apply CogBench to 35 large language models (LLMs) and analyze this data using statistical multilevel modeling techniques.
We find that open-source models are less risk-prone than proprietary models and that fine-tuning on code does not necessarily enhance LLMs' behavior.
arXiv Detail & Related papers (2024-02-28T10:43:54Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
Active learning seeks to reduce the amount of data required to fit the parameters of a model.
latent variable models play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines.
arXiv Detail & Related papers (2022-02-27T19:07:12Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.