論文の概要: Machine Learning on Dynamic Functional Connectivity: Promise, Pitfalls, and Interpretations
- arxiv url: http://arxiv.org/abs/2409.11377v1
- Date: Tue, 17 Sep 2024 17:24:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 15:25:38.492251
- Title: Machine Learning on Dynamic Functional Connectivity: Promise, Pitfalls, and Interpretations
- Title(参考訳): 動的機能接続に関する機械学習 - 約束、落とし穴、解釈
- Authors: Jiaqi Ding, Tingting Dan, Ziquan Wei, Hyuna Cho, Paul J. Laurienti, Won Hwa Kim, Guorong Wu,
- Abstract要約: 機能神経画像の深部モデル設計のための実証的ガイドラインの確立を目指す。
fMRIを用いた認知的タスク認識と疾患診断におけるSOTA(State-of-the-arts)のパフォーマンスはどのようなものか?
以上の課題に対処するため,様々な場面で総合的な評価と統計的分析を行った。
- 参考スコア(独自算出の注目度): 7.013079422694949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An unprecedented amount of existing functional Magnetic Resonance Imaging (fMRI) data provides a new opportunity to understand the relationship between functional fluctuation and human cognition/behavior using a data-driven approach. To that end, tremendous efforts have been made in machine learning to predict cognitive states from evolving volumetric images of blood-oxygen-level-dependent (BOLD) signals. Due to the complex nature of brain function, however, the evaluation on learning performance and discoveries are not often consistent across current state-of-the-arts (SOTA). By capitalizing on large-scale existing neuroimaging data (34,887 data samples from six public databases), we seek to establish a well-founded empirical guideline for designing deep models for functional neuroimages by linking the methodology underpinning with knowledge from the neuroscience domain. Specifically, we put the spotlight on (1) What is the current SOTA performance in cognitive task recognition and disease diagnosis using fMRI? (2) What are the limitations of current deep models? and (3) What is the general guideline for selecting the suitable machine learning backbone for new neuroimaging applications? We have conducted a comprehensive evaluation and statistical analysis, in various settings, to answer the above outstanding questions.
- Abstract(参考訳): 既存のfMRI(Function Magnetic Resonance Imaging)データは、データ駆動アプローチを用いて、機能的ゆらぎと人間の認知/行動の関係を理解する新たな機会を提供する。
そのために機械学習は、血液酸素レベル依存(BOLD)シグナルの体積画像から認知状態を予測するための膨大な努力をしてきた。
しかし、脳機能の複雑な性質のため、学習性能と発見に対する評価は、現在の最先端技術(SOTA)間では一致しないことが多い。
6つの公開データベースから得られた34,887件のデータサンプルを,大規模に既存のニューロイメージングデータを活用することにより,ニューロサイエンス領域の知識に根ざした方法論をリンクすることによって,機能的ニューロイメージングの深部モデル設計のための実証的ガイドラインの確立を目指す。
特に,1)fMRIを用いた認知的タスク認識と疾患診断における現在のSOTA性能はどのようなものか,という点に注目する。
2) 現在の深層モデルの限界は何か。
そして(3)新しいニューロイメージングアプリケーションに適した機械学習バックボーンを選択するための一般的なガイドラインは何か。
以上の課題に対処するため,様々な場面で総合的な評価と統計的分析を行った。
関連論文リスト
- Generative forecasting of brain activity enhances Alzheimer's classification and interpretation [16.09844316281377]
静止状態機能型磁気共鳴イメージング(rs-fMRI)は、神経活動を監視する非侵襲的な方法を提供する。
深層学習はこれらの表現を捉えることを約束している。
本研究では,データ拡張の一形態として,rs-fMRIから派生した独立成分ネットワークの時系列予測に着目した。
論文 参考訳(メタデータ) (2024-10-30T23:51:31Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
被験者のfMRIデータを入力として利用する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
我々は,人間の視覚系の各領域の異なる機能的特徴を,我々のモデルが捉えていることを示す。
予備評価は、Brain3Dがシミュレーションシナリオで障害した脳領域を正常に識別できることを示唆している。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - fMRI-S4: learning short- and long-range dynamic fMRI dependencies using
1D Convolutions and State Space Models [0.0]
fMRI-S4は、静止状態機能MRIから表現型と精神疾患を分類するための汎用的なディープラーニングモデルである。
我々は,fMRI-S4が3つのタスクすべてにおいて既存の手法よりも優れており,各設定ごとに特別なパラメータ調整を行わずに,プラグ&プレイモデルとして訓練できることを示す。
論文 参考訳(メタデータ) (2022-08-08T14:07:25Z) - Classification of ADHD Patients Using Kernel Hierarchical Extreme
Learning Machine [3.39487428163997]
我々は、脳機能接続のダイナミクスを利用して、医療画像データの特徴をモデル化する。
その結果,最先端モデルよりも優れた分類率を得た。
論文 参考訳(メタデータ) (2022-06-28T05:17:54Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
本稿では、領域マップされたfMRIシーケンスと構造接続性の両方を入力として組み込んだ効率的なグラフニューラルネットワークモデルを構築する。
サンプルレベルの適応的隣接行列を学習することで、潜伏する脳のダイナミクスのよい表現を見つけ出す。
これらのモジュールは容易に適応でき、神経科学領域以外の用途にも有用である可能性がある。
論文 参考訳(メタデータ) (2022-05-23T21:57:31Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。