論文の概要: Towards Opinion Shaping: A Deep Reinforcement Learning Approach in Bot-User Interactions
- arxiv url: http://arxiv.org/abs/2409.11426v1
- Date: Thu, 12 Sep 2024 23:39:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 22:12:27.544238
- Title: Towards Opinion Shaping: A Deep Reinforcement Learning Approach in Bot-User Interactions
- Title(参考訳): オピニオン形成に向けて:ボットとユーザインタラクションにおける深層強化学習アプローチ
- Authors: Farbod Siahkali, Saba Samadi, Hamed Kebriaei,
- Abstract要約: 本稿では,SBCM(Bounded Bounded Confidence Model)に着目し,ユーザ-ボットインタラクションによるソーシャルネットワークアルゴリズムの干渉の影響について検討する。
それは、Deep Deterministic Policy Gradient (DDPG)アルゴリズムとその変種を統合して、異なるDeep Reinforcement Learning (DRL)を実験する。
実験の結果,この手法がソーシャルプラットフォームに広告資源を配置する可能性を示す,効率的な意見形成をもたらす可能性が示唆された。
- 参考スコア(独自算出の注目度): 2.85386288555414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to investigate the impact of interference in social network algorithms via user-bot interactions, focusing on the Stochastic Bounded Confidence Model (SBCM). This paper explores two approaches: positioning bots controlled by agents into the network and targeted advertising under various circumstances, operating with an advertising budget. This study integrates the Deep Deterministic Policy Gradient (DDPG) algorithm and its variants to experiment with different Deep Reinforcement Learning (DRL). Finally, experimental results demonstrate that this approach can result in efficient opinion shaping, indicating its potential in deploying advertising resources on social platforms.
- Abstract(参考訳): 本稿では,SBCM(Stochastic bounded Confidence Model)に着目し,ユーザ-ボットインタラクションによるソーシャルネットワークアルゴリズムの干渉の影響について検討する。
本稿では,エージェントが制御するボットをネットワークに配置する手法と,広告予算で運用するさまざまな状況下でのターゲット広告の2つのアプローチについて検討する。
本研究は、Deep Deterministic Policy Gradient (DDPG)アルゴリズムと、その変種を統合して、異なるDeep Reinforcement Learning (DRL)を実験する。
最後に, この手法がソーシャルプラットフォームに広告資源を配置する可能性を示す, 効果的な意見形成をもたらすことを示す実験結果が得られた。
関連論文リスト
- Multi-agent Off-policy Actor-Critic Reinforcement Learning for Partially Observable Environments [30.280532078714455]
本研究では,強化学習のためのマルチエージェント・オフ・ポリティクス・アクター・クリティック・アルゴリズムにおいて,グローバルな状態を推定するソーシャル・ラーニング手法を提案する。
社会的学習法により,世界状態が完全に観察された場合と推定された場合の最終的な結果の差が,社会的学習更新の適切な回数の反復を行う場合に,$varepsilon$-boundedとなることを示す。
論文 参考訳(メタデータ) (2024-07-06T06:51:14Z) - Neural Active Learning Beyond Bandits [69.99592173038903]
ストリームベースとプールベースの両方のアクティブラーニングをニューラルネットワーク近似を用いて検討する。
ストリームベースおよびプールベースアクティブラーニングのためのニューラルネットワークを新たに設計したエクスプロイトと探索に基づく2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-18T21:52:14Z) - Bayesian Off-Policy Evaluation and Learning for Large Action Spaces [14.203316003782604]
対話型システムでは、アクションはよく相関し、よりサンプリング効率の良いオフ・ポリシーの評価と学習の機会を提供する。
我々は、これらの相関関係を構造化および情報的事前を通じて捉えるために、統一されたベイズ的枠組みを導入する。
我々は,OPEとOPLの一般ベイズ的アプローチであるsDMを提案する。
論文 参考訳(メタデータ) (2024-02-22T16:09:45Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
動的ミスマッチで異なるドメインにまたがるポリシーを一般化することは、強化学習において重要な課題となる。
本稿では、ペア化された値ターゲットの近接に基づいて、ソースドメインからの遷移を選択的に共有するバリューガイドデータフィルタリング(VGDF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-28T04:08:40Z) - Crowdsourcing Impacts: Exploring the Utility of Crowds for Anticipating
Societal Impacts of Algorithmic Decision Making [7.068913546756094]
我々は、政府のアルゴリズムによる意思決定ツールのセットに基づいて、さまざまなタイプの影響領域を明らかにするためにクラウドソーシングを採用している。
本手法は, 群集の認知的多様性を活用し, 様々な問題を明らかにするのに有効であることが示唆された。
論文 参考訳(メタデータ) (2022-07-19T19:46:53Z) - Verified Probabilistic Policies for Deep Reinforcement Learning [6.85316573653194]
我々は、深い強化学習のための確率的政策を検証する問題に取り組む。
本稿では,マルコフ決定プロセスの間隔に基づく抽象的アプローチを提案する。
本稿では,抽象的解釈,混合整数線形プログラミング,エントロピーに基づく洗練,確率的モデルチェックを用いて,これらのモデルを構築・解決する手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T23:55:04Z) - Techniques Toward Optimizing Viewability in RTB Ad Campaigns Using
Reinforcement Learning [0.0]
強化学習(Reinforcement Learning, RL)は、環境との相互作用を通じて意思決定エージェントを訓練する効果的な手法である。
デジタル広告において、リアルタイム入札(Real-time bidding、RTB)は、リアルタイムオークションを通じて広告インベントリを割り当てる一般的な方法である。
論文 参考訳(メタデータ) (2021-05-21T21:56:12Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。