Improving LLM Reasoning with Multi-Agent Tree-of-Thought Validator Agent
- URL: http://arxiv.org/abs/2409.11527v2
- Date: Tue, 5 Nov 2024 01:34:26 GMT
- Title: Improving LLM Reasoning with Multi-Agent Tree-of-Thought Validator Agent
- Authors: Fatemeh Haji, Mazal Bethany, Maryam Tabar, Jason Chiang, Anthony Rios, Peyman Najafirad,
- Abstract summary: Tree of Thoughts (ToT) methods have shown potential in improving reasoning for complex question-answering tasks.
A critical limitation in multi-agent reasoning is the 'Reasoner' agent's shallow exploration of reasoning paths.
We introduce a novel approach combining ToT-based Reasoner agents with a Thought Validator agent.
Our method demonstrates superior performance compared to existing techniques when evaluated on the GSM8K dataset.
- Score: 9.439315294704368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent strategies have emerged as a promising approach to enhance the reasoning abilities of Large Language Models (LLMs) by assigning specialized roles in the problem-solving process. Concurrently, Tree of Thoughts (ToT) methods have shown potential in improving reasoning for complex question-answering tasks by exploring diverse reasoning paths. A critical limitation in multi-agent reasoning is the 'Reasoner' agent's shallow exploration of reasoning paths. While ToT strategies could help mitigate this problem, they may generate flawed reasoning branches, which could harm the trustworthiness of the final answer. To leverage the strengths of both multi-agent reasoning and ToT strategies, we introduce a novel approach combining ToT-based Reasoner agents with a Thought Validator agent. Multiple Reasoner agents operate in parallel, employing ToT to explore diverse reasoning paths. The Thought Validator then scrutinizes these paths, considering a Reasoner's conclusion only if its reasoning is valid. This method enables a more robust voting strategy by discarding faulty reasoning paths, enhancing the system's ability to tackle tasks requiring systematic and trustworthy reasoning. Our method demonstrates superior performance compared to existing techniques when evaluated on the GSM8K dataset, outperforming the standard ToT strategy by an average 5.6% across four LLMs. The code and related content can be found in: https://github.com/SecureAIAutonomyLab/MA-ToT
Related papers
- Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs)
In this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges.
arXiv Detail & Related papers (2024-10-08T05:26:28Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - CoT Rerailer: Enhancing the Reliability of Large Language Models in Complex Reasoning Tasks through Error Detection and Correction [9.44858963874474]
Chain-of-Thought (CoT) prompting enhances Large Language Models (LLMs) complex reasoning abilities.
We propose the CoT Rerailer to address these challenges, employing self-consistency and multi-agent debate systems.
We demonstrate the effectiveness of our approach across diverse question-answering datasets in various knowledge domains.
arXiv Detail & Related papers (2024-08-25T21:20:17Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - CoMM: Collaborative Multi-Agent, Multi-Reasoning-Path Prompting for Complex Problem Solving [9.446546965008249]
We propose a collaborative multi-agent, multi-reasoning-path (CoMM) prompting framework.
Specifically, we prompt LLMs to play different roles in a problem-solving team, and encourage different role-play agents to collaboratively solve the target task.
Empirical results demonstrate the effectiveness of the proposed methods on two college-level science problems.
arXiv Detail & Related papers (2024-04-26T23:29:12Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
We propose PathFinder, a tree-search-based reasoning path generation approach.
It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding.
Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.
arXiv Detail & Related papers (2023-12-08T17:05:47Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z) - GANterfactual-RL: Understanding Reinforcement Learning Agents'
Strategies through Visual Counterfactual Explanations [0.7874708385247353]
We propose a novel but simple method to generate counterfactual explanations for RL agents.
Our method is fully model-agnostic and we demonstrate that it outperforms the only previous method in several computational metrics.
arXiv Detail & Related papers (2023-02-24T15:29:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.