Towards Fair RAG: On the Impact of Fair Ranking in Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2409.11598v1
- Date: Tue, 17 Sep 2024 23:10:04 GMT
- Title: Towards Fair RAG: On the Impact of Fair Ranking in Retrieval-Augmented Generation
- Authors: To Eun Kim, Fernando Diaz,
- Abstract summary: This paper presents the first systematic evaluation of RAG systems integrated with fair rankings.
We focus specifically on measuring the fair exposure of each relevant item across the rankings utilized by RAG systems.
Our findings indicate that RAG systems with fair rankings can maintain a high level of generation quality and, in many cases, even outperform traditional RAG systems.
- Score: 53.285436927963865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many language models now enhance their responses with retrieval capabilities, leading to the widespread adoption of retrieval-augmented generation (RAG) systems. However, despite retrieval being a core component of RAG, much of the research in this area overlooks the extensive body of work on fair ranking, neglecting the importance of considering all stakeholders involved. This paper presents the first systematic evaluation of RAG systems integrated with fair rankings. We focus specifically on measuring the fair exposure of each relevant item across the rankings utilized by RAG systems (i.e., item-side fairness), aiming to promote equitable growth for relevant item providers. To gain a deep understanding of the relationship between item-fairness, ranking quality, and generation quality in the context of RAG, we analyze nine different RAG systems that incorporate fair rankings across seven distinct datasets. Our findings indicate that RAG systems with fair rankings can maintain a high level of generation quality and, in many cases, even outperform traditional RAG systems, despite the general trend of a tradeoff between ensuring fairness and maintaining system-effectiveness. We believe our insights lay the groundwork for responsible and equitable RAG systems and open new avenues for future research. We publicly release our codebase and dataset at https://github.com/kimdanny/Fair-RAG.
Related papers
- Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage [74.70255719194819]
We introduce a novel framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question.
We use this framework to evaluate three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat.
We find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50% of core sub-questions.
arXiv Detail & Related papers (2024-10-20T22:59:34Z) - Does RAG Introduce Unfairness in LLMs? Evaluating Fairness in Retrieval-Augmented Generation Systems [18.926129063000264]
RAG (Retrieval-Augmented Generation) have recently gained significant attention for their enhanced ability to integrate external knowledge sources.
We propose a fairness evaluation framework tailored to RAG methods, using scenario-based questions and analyzing disparities across demographic attributes.
arXiv Detail & Related papers (2024-09-29T22:04:26Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
We propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules.
RAGChecker has significantly better correlations with human judgments than other evaluation metrics.
The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
arXiv Detail & Related papers (2024-08-15T10:20:54Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems [0.0]
Retrieval-Augmented Generation (RAG) has become a standard architectural pattern for domain-specific knowledge into user-facing chat applications.
We introduce RAGBench: the first comprehensive, large-scale RAG benchmark dataset of 100k examples.
We formalize the TRACe evaluation framework: a set of explainable and actionable RAG evaluation metrics applicable across all RAG domains.
arXiv Detail & Related papers (2024-06-25T20:23:15Z) - Evaluation of Retrieval-Augmented Generation: A Survey [13.633909177683462]
We provide a comprehensive overview of the evaluation and benchmarks of Retrieval-Augmented Generation (RAG) systems.
Specifically, we examine and compare several quantifiable metrics of the Retrieval and Generation components, such as relevance, accuracy, and faithfulness.
We then analyze the various datasets and metrics, discuss the limitations of current benchmarks, and suggest potential directions to advance the field of RAG benchmarks.
arXiv Detail & Related papers (2024-05-13T02:33:25Z) - Towards a Search Engine for Machines: Unified Ranking for Multiple Retrieval-Augmented Large Language Models [21.115495457454365]
uRAG is a framework with a unified retrieval engine that serves multiple downstream retrieval-augmented generation (RAG) systems.
We build a large-scale experimentation ecosystem consisting of 18 RAG systems that engage in training and 18 unknown RAG systems that use the uRAG as the new users of the search engine.
arXiv Detail & Related papers (2024-04-30T19:51:37Z) - ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems [46.522527144802076]
We introduce ARES, an Automated RAG Evaluation System, for evaluating RAG systems.
ARES finetunes lightweight LM judges to assess the quality of individual RAG components.
We make our code and datasets publicly available on Github.
arXiv Detail & Related papers (2023-11-16T00:39:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.