論文の概要: Combating Phone Scams with LLM-based Detection: Where Do We Stand?
- arxiv url: http://arxiv.org/abs/2409.11643v2
- Date: Thu, 17 Oct 2024 08:58:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 19:50:48.218260
- Title: Combating Phone Scams with LLM-based Detection: Where Do We Stand?
- Title(参考訳): LLMによる携帯電話の盗聴:我々はどこに立つのか?
- Authors: Zitong Shen, Kangzhong Wang, Youqian Zhang, Grace Ngai, Eugene Y. Fu,
- Abstract要約: 本研究では,大規模言語モデル(LLM)による不正通話の検出の可能性について検討する。
LLMをベースとした検出器は、潜在的な詐欺の発生を検知し、ユーザに対して即時保護を提供する。
- 参考スコア(独自算出の注目度): 1.8979188847659796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phone scams pose a significant threat to individuals and communities, causing substantial financial losses and emotional distress. Despite ongoing efforts to combat these scams, scammers continue to adapt and refine their tactics, making it imperative to explore innovative countermeasures. This research explores the potential of large language models (LLMs) to provide detection of fraudulent phone calls. By analyzing the conversational dynamics between scammers and victims, LLM-based detectors can identify potential scams as they occur, offering immediate protection to users. While such approaches demonstrate promising results, we also acknowledge the challenges of biased datasets, relatively low recall, and hallucinations that must be addressed for further advancement in this field
- Abstract(参考訳): 電話詐欺は個人やコミュニティに重大な脅威をもたらし、経済的損失と感情的な苦痛を引き起こしている。
これらの詐欺と闘う努力を続けているにもかかわらず、詐欺師は戦術を適応し、洗練し続けており、革新的な対策を探求することが不可欠である。
本研究では,大規模言語モデル(LLM)による不正通話の検出の可能性について検討する。
詐欺師と被害者の会話のダイナミクスを分析することで、LSMベースの検知器は潜在的な詐欺を検知し、即座にユーザーを保護することができる。
このようなアプローチは有望な結果を示す一方で、バイアス付きデータセットの課題、比較的低いリコール、そしてこの分野のさらなる進歩のために対処する必要がある幻覚も認識している。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Can LLMs be Scammed? A Baseline Measurement Study [0.0873811641236639]
様々な詐欺戦術に対するLarge Language Models(LLMs)の脆弱性を体系的に評価する。
まず、FINRA分類で同定された多様な詐欺カテゴリーを反映した37の明確に定義されたベース詐欺シナリオを組み込んだ。
第2に、汎用プロプライエタリ(GPT-3.5, GPT-4)とオープンソース(Llama)モデルを用いて、スカム検出における性能を解析する。
第三に、我々の研究は、詐欺戦術がLSMに対して最も効果的であるか、そして様々なペルソナの特徴や説得技術がこれらの脆弱性にどのように影響するかについての批判的な洞察を提供する。
論文 参考訳(メタデータ) (2024-10-14T05:22:27Z) - Mitigating Backdoor Threats to Large Language Models: Advancement and Challenges [46.032173498399885]
大規模言語モデル(LLM)は、Web検索、ヘルスケア、ソフトウェア開発など、さまざまな領域に大きな影響を与えている。
これらのモデルがスケールするにつれて、サイバーセキュリティのリスク、特にバックドア攻撃に対する脆弱性が高まる。
論文 参考訳(メタデータ) (2024-09-30T06:31:36Z) - Evaluating Robustness of Generative Search Engine on Adversarial Factual Questions [89.35345649303451]
生成検索エンジンは、人々がオンラインで情報を求める方法を変える可能性を秘めている。
しかし,既存の大規模言語モデル(LLM)が支援する生成検索エンジンからの応答は必ずしも正確ではない。
検索強化世代は、敵がシステム全体を回避できるため、安全上の懸念を増す。
論文 参考訳(メタデータ) (2024-02-25T11:22:19Z) - Exploring the Adversarial Capabilities of Large Language Models [25.7847594292453]
大きな言語モデル(LLM)は、良心的なサンプルから敵の例を作れば、既存の安全なレールを騙すことができる。
我々の実験は、ヘイトスピーチ検出に焦点をあて、LLMが敵の摂動を見つけることに成功し、ヘイトスピーチ検出システムを効果的に損なうことを示した。
論文 参考訳(メタデータ) (2024-02-14T12:28:38Z) - Detecting Scams Using Large Language Models [19.7220607313348]
大規模言語モデル(LLM)は、セキュリティなど、様々なアプリケーションで注目を集めている。
本稿では,サイバーセキュリティの重要な側面である詐欺検知におけるLCMの有用性について検討する。
フィッシング、前払い詐欺、ロマンス詐欺などの詐欺を識別するためのLLMの新しいユースケースを提案する。
論文 参考訳(メタデータ) (2024-02-05T16:13:54Z) - An Improved Transformer-based Model for Detecting Phishing, Spam, and
Ham: A Large Language Model Approach [0.0]
本稿では,BERTファミリを微調整し,フィッシングやスパムメールを特に検出するIPSDMを提案する。
当社の微調整バージョンであるIPSDMは、バランスの取れていないデータセットとバランスの取れていないデータセットの両方で、メールをよりよく分類することができます。
論文 参考訳(メタデータ) (2023-11-01T18:41:50Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
大規模言語モデル(LLM)は、誤った、誤った、あるいは誤解を招くコンテンツを生成する。
LLMは悪意のあるアプリケーションに利用することができる。
これは、ユーザーを欺く可能性があるという点で、社会に重大な課題をもたらす。
論文 参考訳(メタデータ) (2023-10-08T14:55:02Z) - A Comprehensive Overview of Backdoor Attacks in Large Language Models within Communication Networks [28.1095109118807]
LLM(Large Language Models)は、将来のモバイル通信ネットワークに効率的でインテリジェントなサービスを提供する。
LLMは悪意ある操作を受けたトレーニングデータや処理に晒され、攻撃者がモデルに隠れたバックドアを埋め込む機会を提供する。
バックドア攻撃は、信頼性とセキュリティが最重要である通信ネットワーク内で特に関係している。
論文 参考訳(メタデータ) (2023-08-28T07:31:43Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。