論文の概要: From exponential to finite/fixed-time stability: Applications to optimization
- arxiv url: http://arxiv.org/abs/2409.11713v1
- Date: Wed, 18 Sep 2024 05:43:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 19:00:08.077709
- Title: From exponential to finite/fixed-time stability: Applications to optimization
- Title(参考訳): 指数関数から有限・固定時間安定へ:最適化への応用
- Authors: Ibrahim K. Ozaslan, Mihailo R. Jovanović,
- Abstract要約: 指数関数的に安定な最適化アルゴリズムが与えられた場合、有限・固定時間安定アルゴリズムを得るように修正できるだろうか?
我々は、元の力学の右辺の単純なスケーリングを通して、解を有限時間間隔でどのように計算できるかを示す肯定的な答えを提供する。
我々は、元のシステムの指数的安定性を証明したリアプノフ関数を用いて、修正アルゴリズムの所望の性質を証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of finite/fixed-time stable optimization algorithms typically involves study of specific problem instances. The lack of a unified framework hinders understanding of more sophisticated algorithms, e.g., primal-dual gradient flow dynamics. The purpose of this paper is to address the following question: Given an exponentially stable optimization algorithm, can it be modified to obtain a finite/fixed-time stable algorithm? We provide an affirmative answer, demonstrate how the solution can be computed on a finite-time interval via a simple scaling of the right-hand-side of the original dynamics, and certify the desired properties of the modified algorithm using the Lyapunov function that proves exponential stability of the original system. Finally, we examine nonsmooth composite optimization problems and smooth problems with linear constraints to demonstrate the merits of our approach.
- Abstract(参考訳): 有限時間安定最適化アルゴリズムの開発は、典型的には特定の問題事例の研究を伴う。
統一されたフレームワークの欠如は、例えば原始双対勾配流のダイナミクスのようなより洗練されたアルゴリズムの理解を妨げる。
本研究の目的は,指数関数的に安定な最適化アルゴリズムが与えられた場合,有限・固定時間安定なアルゴリズムが得られるか,という問題に対処することである。
我々は、元の力学の右辺の単純なスケーリングを通して、その解が有限時間間隔でどのように計算できるかを実証し、元の系の指数的安定性を証明したリアプノフ関数を用いて、修正アルゴリズムの所望の性質を証明した。
最後に,非滑らかな複合最適化問題と線形制約を伴う滑らかな問題を考察し,提案手法の利点を実証する。
関連論文リスト
- An Accelerated Block Proximal Framework with Adaptive Momentum for
Nonconvex and Nonsmooth Optimization [2.323238724742687]
非平滑および非平滑最適化のための適応モーメント(ABPL$+$)を有する加速ブロック近位線形フレームワークを提案する。
いくつかのアルゴリズムでは外挿ステップの潜在的な原因を解析し、比較プロセスの強化によってこの問題を解消する。
我々はアルゴリズムを勾配ステップと線形補間ステップの更新を含む任意のシナリオに拡張する。
論文 参考訳(メタデータ) (2023-08-23T13:32:31Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Generalized Gradient Flows with Provable Fixed-Time Convergence and Fast
Evasion of Non-Degenerate Saddle Points [8.452349885923507]
グラディエントベースの1次凸最適化アルゴリズムは、機械学習タスクを含むさまざまな領域で広く適用可能である。
最適時間の固定時間理論の最近の進歩に触発されて,高速化最適化アルゴリズムを設計するための枠組みを導入する。
非ド・サドル点を許容する関数に対しては、これらのサドル点を避けるのに必要な時間は初期条件すべてに一様有界であることを示す。
論文 参考訳(メタデータ) (2022-12-07T16:36:23Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent
Flows [4.817429789586127]
本稿では, 固定時間安定力学系の概念に基づいて, 加速を実現するための多言語最適化フレームワークを提案する。
提案手法の高速化された収束特性を,最先端の最適化アルゴリズムに対して様々な数値例で検証する。
論文 参考訳(メタデータ) (2021-12-02T16:04:40Z) - Inequality Constrained Stochastic Nonlinear Optimization via Active-Set
Sequential Quadratic Programming [17.9230793188835]
客観的・決定論的等式と不等式制約を用いた非線形最適化問題について検討する。
本稿では,有理関数として微分可能な拡張ラグランジアンを用いて,能動型逐次適応型プログラミングアルゴリズムを提案する。
アルゴリズムは、拡張ラグランジアンのパラメータを適応的に選択し、行探索を行い、ステップサイズを決定する。
論文 参考訳(メタデータ) (2021-09-23T17:12:17Z) - Transient growth of accelerated first-order methods for strongly convex
optimization problems [1.6114012813668934]
本稿では,高速化第一次最適化アルゴリズムの過渡挙動について検討する。
二次最適化問題に対しては、線形系理論のツールを用いて、非正規ダイナミクスの存在から過渡的成長が生じることを示す。
強凸滑らかな最適化問題に対して, 積分二次制約の理論を応用し, ネステロフ加速法の過渡応答の大きさの上限を定式化する。
論文 参考訳(メタデータ) (2021-03-14T20:01:14Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives [97.16266088683061]
この論文は、運動量に基づく最適化アルゴリズムにおいてシンプレクティックな離散化スキームが重要であることを厳格に証明している。
これは加速収束を示すアルゴリズムの特性を提供する。
論文 参考訳(メタデータ) (2020-02-28T00:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。