論文の概要: Metric-Semantic Factor Graph Generation based on Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2409.11972v1
- Date: Wed, 18 Sep 2024 13:24:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 17:36:39.583750
- Title: Metric-Semantic Factor Graph Generation based on Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いたメトリック・セマンティック因子グラフ生成
- Authors: Jose Andres Millan-Romera, Hriday Bavle, Muhammad Shaheer, Holger Voos, Jose Luis Sanchez-Lopez,
- Abstract要約: 屋内では、平面の相対的な位置決めのような空間的制約は、レイアウトのばらつきにもかかわらず一貫している。
本稿では,部屋や壁といった高レベルな概念を表現することによって,これらの不変関係をグラフSLAMフレームワークで捉える方法について検討する。
いくつかの取り組みは、各概念生成のためのアドホックなソリューションと、手動で定義された要素によってこの問題に対処してきた。
本稿では,意味的シーングラフの定義,幾何学的情報の統合,相互接続因子の学習を含む,距離-意味因子グラフ生成のための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the relationships between geometric structures and semantic concepts is crucial for building accurate models of complex environments. In indoors, certain spatial constraints, such as the relative positioning of planes, remain consistent despite variations in layout. This paper explores how these invariant relationships can be captured in a graph SLAM framework by representing high-level concepts like rooms and walls, linking them to geometric elements like planes through an optimizable factor graph. Several efforts have tackled this issue with add-hoc solutions for each concept generation and with manually-defined factors. This paper proposes a novel method for metric-semantic factor graph generation which includes defining a semantic scene graph, integrating geometric information, and learning the interconnecting factors, all based on Graph Neural Networks (GNNs). An edge classification network (G-GNN) sorts the edges between planes into same room, same wall or none types. The resulting relations are clustered, generating a room or wall for each cluster. A second family of networks (F-GNN) infers the geometrical origin of the new nodes. The definition of the factors employs the same F-GNN used for the metric attribute of the generated nodes. Furthermore, share the new factor graph with the S-Graphs+ algorithm, extending its graph expressiveness and scene representation with the ultimate goal of improving the SLAM performance. The complexity of the environments is increased to N-plane rooms by training the networks on L-shaped rooms. The framework is evaluated in synthetic and simulated scenarios as no real datasets of the required complex layouts are available.
- Abstract(参考訳): 幾何学構造と意味概念の関係を理解することは、複雑な環境の正確なモデルを構築する上で重要である。
屋内では、平面の相対的な位置決めのような空間的制約は、レイアウトのばらつきにもかかわらず一貫している。
本稿では,空間や壁といった高次概念を表現し,最適化可能な因子グラフを通じて平面などの幾何学的要素にリンクすることにより,これらの不変関係をグラフSLAMフレームワークで捉える方法について検討する。
いくつかの取り組みは、各概念生成のためのアドホックなソリューションと、手動で定義された要素によってこの問題に対処してきた。
本稿では,意味的シーングラフの定義,幾何学的情報の統合,およびグラフニューラルネットワーク(GNN)に基づく相互接続因子の学習を含む,メトリック・セマンティック・ファクターグラフ生成のための新しい手法を提案する。
エッジ分類ネットワーク(G-GNN)は、平面間のエッジを同じ部屋、同じ壁、または全くのタイプに分類する。
結果として生成された関係はクラスタ化され、各クラスタの部屋や壁を生成する。
第2のネットワークファミリー(F-GNN)は、新しいノードの幾何学的起源を推測する。
因子の定義は、生成されたノードのメートル法属性に使用されるのと同じF-GNNを使用する。
さらに、新しい因子グラフをS-Graphs+アルゴリズムと共有し、そのグラフ表現性とシーン表現を拡張し、SLAM性能を改善するという究極の目標を達成した。
環境の複雑さは、L字型の部屋のネットワークを訓練することで、N面の部屋へと増大する。
このフレームワークは、複雑なレイアウトの実際のデータセットが利用できないため、合成およびシミュレートされたシナリオで評価される。
関連論文リスト
- Graph Pooling via Ricci Flow [1.1126342180866644]
グラフプーリング演算子(ORC-Pool)を導入し,Ollivierの離散リッチ曲率とそれに付随する幾何流によるグラフの幾何学的特徴付けを利用する。
ORC-Poolはそのようなクラスタリングアプローチを属性付きグラフに拡張し、幾何学的粗大化をプール層としてグラフニューラルネットワークに統合する。
論文 参考訳(メタデータ) (2024-07-05T03:26:37Z) - LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering [59.89626219328127]
グラフクラスタリングは機械学習の基本的な問題である。
近年、ディープラーニング手法は最先端の成果を達成しているが、事前に定義されたクラスタ番号なしでは動作できない。
本稿では,グラフ情報理論の新たな視点からこの問題に対処することを提案する。
論文 参考訳(メタデータ) (2024-05-20T05:46:41Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
GTGANは、グラフ制約のある住宅生成タスクにおいて、エンドツーエンドで効率的なグラフノード関係を学習する。
論文 参考訳(メタデータ) (2023-03-14T20:35:45Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Factorizable Graph Convolutional Networks [90.59836684458905]
本稿では,グラフに符号化された相互に絡み合った関係を明示的に解消する新しいグラフ畳み込みネットワーク(GCN)を提案する。
FactorGCNは単純なグラフを入力として取り、それをいくつかの分解グラフに分解する。
提案したFacterGCNは,合成および実世界のデータセットに対して質的かつ定量的に評価する。
論文 参考訳(メタデータ) (2020-10-12T03:01:40Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
本稿では,この2つの弱点を克服するために,グラフニューラルネットワークのための新しい幾何集約手法を提案する。
提案したアグリゲーションスキームは置換不変であり、ノード埋め込み、構造近傍、二レベルアグリゲーションという3つのモジュールから構成される。
また,このスキームをGeom-GCNと呼ばれるグラフ畳み込みネットワークに実装し,グラフ上でトランスダクティブ学習を行う。
論文 参考訳(メタデータ) (2020-02-13T00:03:09Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
本稿では、EdgeNetの概念を通じて、最先端グラフニューラルネットワーク(GNN)を統一する一般的なフレームワークを提案する。
EdgeNetはGNNアーキテクチャであり、異なるノードが異なるパラメータを使って異なる隣人の情報を測定することができる。
これは、ノードが実行でき、既存のグラフ畳み込みニューラルネットワーク(GCNN)とグラフアテンションネットワーク(GAT)の1つの定式化の下で包含できる一般的な線形で局所的な操作である。
論文 参考訳(メタデータ) (2020-01-21T15:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。