Representing Positional Information in Generative World Models for Object Manipulation
- URL: http://arxiv.org/abs/2409.12005v2
- Date: Thu, 19 Sep 2024 07:38:06 GMT
- Title: Representing Positional Information in Generative World Models for Object Manipulation
- Authors: Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Sai Rajeswar,
- Abstract summary: We introduce a general approach that empowers world model-based agents to solve object-positioning tasks.
In particular, LCP employs object-centric latent representations that explicitly capture object positional information for goal specification.
Our methods are rigorously evaluated across several manipulation environments, showing favorable performance compared to current model-based control approaches.
- Score: 12.263162194821787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object manipulation capabilities are essential skills that set apart embodied agents engaging with the world, especially in the realm of robotics. The ability to predict outcomes of interactions with objects is paramount in this setting. While model-based control methods have started to be employed for tackling manipulation tasks, they have faced challenges in accurately manipulating objects. As we analyze the causes of this limitation, we identify the cause of underperformance in the way current world models represent crucial positional information, especially about the target's goal specification for object positioning tasks. We introduce a general approach that empowers world model-based agents to effectively solve object-positioning tasks. We propose two declinations of this approach for generative world models: position-conditioned (PCP) and latent-conditioned (LCP) policy learning. In particular, LCP employs object-centric latent representations that explicitly capture object positional information for goal specification. This naturally leads to the emergence of multimodal capabilities, enabling the specification of goals through spatial coordinates or a visual goal. Our methods are rigorously evaluated across several manipulation environments, showing favorable performance compared to current model-based control approaches.
Related papers
- Keypoint Abstraction using Large Models for Object-Relative Imitation Learning [78.92043196054071]
Generalization to novel object configurations and instances across diverse tasks and environments is a critical challenge in robotics.
Keypoint-based representations have been proven effective as a succinct representation for essential object capturing features.
We propose KALM, a framework that leverages large pre-trained vision-language models to automatically generate task-relevant and cross-instance consistent keypoints.
arXiv Detail & Related papers (2024-10-30T17:37:31Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - DistFormer: Enhancing Local and Global Features for Monocular Per-Object
Distance Estimation [35.6022448037063]
Per-object distance estimation is crucial in safety-critical applications such as autonomous driving, surveillance, and robotics.
Existing approaches rely on two scales: local information (i.e., the bounding box proportions) or global information.
Our work aims to strengthen both local and global cues.
arXiv Detail & Related papers (2024-01-06T10:56:36Z) - Localizing Active Objects from Egocentric Vision with Symbolic World
Knowledge [62.981429762309226]
The ability to actively ground task instructions from an egocentric view is crucial for AI agents to accomplish tasks or assist humans virtually.
We propose to improve phrase grounding models' ability on localizing the active objects by: learning the role of objects undergoing change and extracting them accurately from the instructions.
We evaluate our framework on Ego4D and Epic-Kitchens datasets.
arXiv Detail & Related papers (2023-10-23T16:14:05Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
Training agents to manipulate objects, poses many challenges.
We propose an approach that explores the environment in search for target objects, computes their 3D coordinates once they are located, and then continues to estimate their 3D locations even when the objects are not visible.
Our evaluations show a massive 3x improvement in success rate over a model that has access to the same sensory suite.
arXiv Detail & Related papers (2022-03-15T17:59:01Z) - Object-Driven Active Mapping for More Accurate Object Pose Estimation
and Robotic Grasping [5.385583891213281]
The framework is built on an object SLAM system integrated with a simultaneous multi-object pose estimation process.
By combining the mapping module and the exploration strategy, an accurate object map that is compatible with robotic grasping can be generated.
arXiv Detail & Related papers (2020-12-03T09:36:55Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.