論文の概要: Cartan moving frames and the data manifolds
- arxiv url: http://arxiv.org/abs/2409.12057v2
- Date: Wed, 6 Nov 2024 17:13:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 19:50:48.113930
- Title: Cartan moving frames and the data manifolds
- Title(参考訳): カルタン移動フレームとデータ多様体
- Authors: Eliot Tron, Rita Fioresi, Nicolas Couellan, Stéphane Puechmorel,
- Abstract要約: 本稿では、カルタン移動フレームの言語を用いて、データ多様体の幾何学を研究する。
ニューラルネットワークの応答に関する説明は、与えられた入力から容易に到達可能な出力クラスを指摘することによって与えられる。
このことは、ネットワークの出力と入力の幾何学との間の数学的関係が、説明可能な人工知能ツールとしてどのように活用できるかを強調している。
- 参考スコア(独自算出の注目度): 0.08999666725996973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The purpose of this paper is to employ the language of Cartan moving frames to study the geometry of the data manifolds and its Riemannian structure, via the data information metric and its curvature at data points. Using this framework and through experiments, explanations on the response of a neural network are given by pointing out the output classes that are easily reachable from a given input. This emphasizes how the proposed mathematical relationship between the output of the network and the geometry of its inputs can be exploited as an explainable artificial intelligence tool.
- Abstract(参考訳): 本研究の目的は,データ情報量とデータ点の曲率を用いて,カルタン移動フレームの言語を用いて,データ多様体とそのリーマン構造の幾何学を研究することである。
このフレームワークと実験を通じて、ニューラルネットワークの応答に関する説明は、与えられた入力から容易に到達可能な出力クラスを指摘することによって与えられる。
このことは、ネットワークの出力と入力の幾何学との間の数学的関係が、説明可能な人工知能ツールとしてどのように活用できるかを強調している。
関連論文リスト
- Dissecting embedding method: learning higher-order structures from data [0.0]
データ学習のための幾何学的深層学習法は、しばしば特徴空間の幾何学に関する仮定のセットを含む。
これらの仮定と、データが離散的で有限であるという仮定は、いくつかの一般化を引き起こし、データとモデルの出力の間違った解釈を生み出す可能性がある。
論文 参考訳(メタデータ) (2024-10-14T08:19:39Z) - Manifold Learning via Foliations and Knowledge Transfer [0.0]
分類器として訓練された深部ReLUニューラルネットワークを用いたデータ空間上の自然な幾何学的構造を提供する。
そのような葉の特異点が測度ゼロ集合に含まれており、局所正則葉は至る所に存在することを示す。
実験により、データは葉の葉と相関していることが示された。
論文 参考訳(メタデータ) (2024-09-11T16:53:53Z) - Relational Composition in Neural Networks: A Survey and Call to Action [54.47858085003077]
多くのニューラルネットは、データを「機能ベクトル」の線形結合として表現しているように見える。
我々は、この成功は関係性の構成を理解せずに不完全であると主張する。
論文 参考訳(メタデータ) (2024-07-19T20:50:57Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - A geometric framework for outlier detection in high-dimensional data [0.0]
異常検出はデータ分析において重要な課題である。
データセットのメトリック構造を利用するフレームワークを提供する。
この構造を利用することで,高次元データにおける外部観測の検出が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-07-01T12:07:51Z) - A singular Riemannian geometry approach to Deep Neural Networks II.
Reconstruction of 1-D equivalence classes [78.120734120667]
入力空間における出力多様体内の点の事前像を構築する。
我々は、n-次元実空間から(n-1)-次元実空間へのニューラルネットワークマップの場合の簡易性に焦点をあてる。
論文 参考訳(メタデータ) (2021-12-17T11:47:45Z) - GAGE: Geometry Preserving Attributed Graph Embeddings [34.25102483600248]
本稿では,属性ネットワークにノードを埋め込む手法を提案する。
接続と属性の両方の距離を保存する。
学習課題に取り組むために,効率的かつ軽量なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-11-03T02:07:02Z) - Quiver Signal Processing (QSP) [145.6921439353007]
キーバー表現に関する信号処理フレームワークの基礎を述べる。
ネットワークにおける異種多次元情報を扱うための信号処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-22T08:40:15Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
ポイントクラウドは3次元幾何学情報符号化に採用されている主要なデータ構造である。
形状指向型メッセージパッシング方式であるShapeConvを提案する。
論文 参考訳(メタデータ) (2020-04-20T16:11:51Z) - Forgetting Outside the Box: Scrubbing Deep Networks of Information
Accessible from Input-Output Observations [143.3053365553897]
本稿では、訓練された深層ネットワークからトレーニングデータのコホートへの依存を取り除く手順について述べる。
忘れられたコホートについて,クエリ毎にどれだけの情報を取り出すことができるか,という新たな境界を導入する。
我々は,ニューラルタンジェントカーネルにインスパイアされたDNNのアクティベーションとウェイトダイナミクスの接続を利用して,アクティベーションの情報を計算する。
論文 参考訳(メタデータ) (2020-03-05T23:17:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。