論文の概要: Performance of Quantum Approximate Optimization with Quantum Error Detection
- arxiv url: http://arxiv.org/abs/2409.12104v1
- Date: Wed, 18 Sep 2024 16:24:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 16:45:43.733433
- Title: Performance of Quantum Approximate Optimization with Quantum Error Detection
- Title(参考訳): 量子誤差検出による量子近似最適化の性能評価
- Authors: Zichang He, David Amaro, Ruslan Shaydulin, Marco Pistoia,
- Abstract要約: 量子近似最適化アルゴリズム(QAOA)は、スケールアップに期待できる候補である。
QAOAでより優れた古典的なパフォーマンスを達成するには、耐障害性が必要であると考えられている。
我々は,QAOAのフォールトトレラントな実装を$[[k+2,k,2]$ Icebergのエラー検出コードを用いて実証する。
- 参考スコア(独自算出の注目度): 2.0174252910776556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum algorithms must be scaled up to tackle real-world applications. Doing so requires overcoming the noise present on today's hardware. The quantum approximate optimization algorithm (QAOA) is a promising candidate for scaling up due to its modest resource requirements and documented asymptotic speedup over state-of-the-art classical algorithms for some problems. However, achieving better-than-classical performance with QAOA is believed to require fault tolerance. In this paper, we demonstrate a partially fault-tolerant implementation of QAOA using the $[[k+2,k,2]]$ ``Iceberg'' error detection code. We observe that encoding the circuit with the Iceberg code improves the algorithmic performance as compared to the unencoded circuit for problems with up to $20$ logical qubits on a trapped-ion quantum computer. Additionally, we propose and calibrate a model for predicting the code performance, and use it to characterize the limits of the Iceberg code and extrapolate its performance to future hardware with improved error rates. In particular, we show how our model can be used to determine necessary conditions for QAOA to outperform Goemans-Williamson algorithm on future hardware. Our results demonstrate the largest universal quantum computing algorithm protected by partially fault-tolerant quantum error detection on practical applications to date, paving the way towards solving real-world applications with quantum computers.
- Abstract(参考訳): 量子アルゴリズムは、現実世界のアプリケーションに取り組むためにスケールアップされなければならない。
そのためには、今日のハードウェアにあるノイズを克服する必要がある。
量子近似最適化アルゴリズム(QAOA)は、その質素なリソース要求と、いくつかの問題に対する最先端の古典的アルゴリズムに対する漸近的な高速化により、スケールアップの候補として期待できる。
しかし、QAOAでより優れた古典的な性能を達成するには耐障害性が必要であると考えられている。
本稿では,$[[k+2,k,2]]$`Iceberg''エラー検出コードを用いて,QAOAの部分的にフォールトトレラントな実装を示す。
トラップイオン量子コンピュータ上で20ドル以上の論理量子ビットを持つ問題に対して、Iceberg符号で回路を符号化することで、未符号化回路と比較してアルゴリズムの性能が向上する。
さらに,コード性能予測モデルの提案と校正を行い,Iceberg符号の限界を特徴付けるとともに,その性能を将来のハードウェアに拡張し,エラー率を向上させる。
特に,QAOAが将来のハードウェア上でのGoemans-Williamsonアルゴリズムに勝るために必要な条件を決定するために,我々のモデルをどのように利用できるかを示す。
提案手法は, 量子コンピュータによる現実の応用への道筋をたどるとともに, 実用的応用において, 部分的にフォールトトレラントな量子エラー検出によって保護される最大の普遍量子コンピューティングアルゴリズムを示すものである。
関連論文リスト
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Evidence of Scaling Advantage for the Quantum Approximate Optimization Algorithm on a Classically Intractable Problem [8.738180371389097]
量子近似最適化アルゴリズム(QAOA)は、量子コンピュータにおける最適化問題を解くための主要な候補アルゴリズムである。
本稿では,低自己相関二項列(LABS)問題に対するQAOAの広範な数値的な検討を行う。
パラメータが固定されたQAOAのランタイムは、分岐とバウンドの解法よりも良くスケールする。
論文 参考訳(メタデータ) (2023-08-04T14:17:21Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - On proving the robustness of algorithms for early fault-tolerant quantum computers [0.0]
位相推定のためのランダム化アルゴリズムを導入し,その性能を2つの単純なノイズモデルで解析する。
回路深度が約0.916倍である限り、ランダム化アルゴリズムは任意に高い確率で成功できると計算する。
論文 参考訳(メタデータ) (2022-09-22T21:28:12Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
本稿では,ロバストフィッティングのためのハイブリッド量子古典アルゴリズムを提案する。
私たちのコアコントリビューションは、整数プログラムの列を解く、新しい堅牢な適合式である。
実際の量子コンピュータを用いて得られた結果について述べる。
論文 参考訳(メタデータ) (2022-01-25T05:59:24Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z) - The Cost of Improving the Precision of the Variational Quantum
Eigensolver for Quantum Chemistry [0.0]
様々な種類の誤差が変分量子固有解法(VQE)に与える影響について検討する。
ハイブリッド古典量子最適化の最適方法は、中間エネルギー評価においていくつかのノイズを許容することである。
論文 参考訳(メタデータ) (2021-11-09T06:24:52Z) - Deterministic and Entanglement-Efficient Preparation of
Amplitude-Encoded Quantum Registers [0.533024001730262]
古典ベクトル $mathbfb$ は量子状態の振幅で符号化される。
任意の状態の$Q$ qubitsは通常、約2Q$のエンタングゲートを必要とする。
状態準備に必要な量子資源を柔軟に削減できる決定論的(非変分法)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-26T07:37:54Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - To quantum or not to quantum: towards algorithm selection in near-term
quantum optimization [0.0]
本稿では,QAOAが従来のアルゴリズムよりも有利になる確率の高い問題事例を検出する問題について検討する。
クロスバリデーションの精度は96%以上で、実用的な優位性が得られる。
論文 参考訳(メタデータ) (2020-01-22T20:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。