Massively Multi-Person 3D Human Motion Forecasting with Scene Context
- URL: http://arxiv.org/abs/2409.12189v1
- Date: Wed, 18 Sep 2024 17:58:51 GMT
- Title: Massively Multi-Person 3D Human Motion Forecasting with Scene Context
- Authors: Felix B Mueller, Julian Tanke, Juergen Gall,
- Abstract summary: We propose a scene-aware social transformer model (SAST) to forecast long-term (10s) human motion motion.
We combine a temporal convolutional encoder-decoder architecture with a Transformer-based bottleneck that allows us to efficiently combine motion and scene information.
Our model outperforms other approaches in terms of realism and diversity on different metrics and in a user study.
- Score: 13.197408989895102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting long-term 3D human motion is challenging: the stochasticity of human behavior makes it hard to generate realistic human motion from the input sequence alone. Information on the scene environment and the motion of nearby people can greatly aid the generation process. We propose a scene-aware social transformer model (SAST) to forecast long-term (10s) human motion motion. Unlike previous models, our approach can model interactions between both widely varying numbers of people and objects in a scene. We combine a temporal convolutional encoder-decoder architecture with a Transformer-based bottleneck that allows us to efficiently combine motion and scene information. We model the conditional motion distribution using denoising diffusion models. We benchmark our approach on the Humans in Kitchens dataset, which contains 1 to 16 persons and 29 to 50 objects that are visible simultaneously. Our model outperforms other approaches in terms of realism and diversity on different metrics and in a user study. Code is available at https://github.com/felixbmuller/SAST.
Related papers
- Revisit Human-Scene Interaction via Space Occupancy [55.67657438543008]
Human-scene Interaction (HSI) generation is a challenging task and crucial for various downstream tasks.
In this work, we argue that interaction with a scene is essentially interacting with the space occupancy of the scene from an abstract physical perspective.
By treating pure motion sequences as records of humans interacting with invisible scene occupancy, we can aggregate motion-only data into a large-scale paired human-occupancy interaction database.
arXiv Detail & Related papers (2023-12-05T12:03:00Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Object Motion Guided Human Motion Synthesis [22.08240141115053]
We study the problem of full-body human motion synthesis for the manipulation of large-sized objects.
We propose Object MOtion guided human MOtion synthesis (OMOMO), a conditional diffusion framework.
We develop a novel system that captures full-body human manipulation motions by simply attaching a smartphone to the object being manipulated.
arXiv Detail & Related papers (2023-09-28T08:22:00Z) - Synthesizing Diverse Human Motions in 3D Indoor Scenes [16.948649870341782]
We present a novel method for populating 3D indoor scenes with virtual humans that can navigate in the environment and interact with objects in a realistic manner.
Existing approaches rely on training sequences that contain captured human motions and the 3D scenes they interact with.
We propose a reinforcement learning-based approach that enables virtual humans to navigate in 3D scenes and interact with objects realistically and autonomously.
arXiv Detail & Related papers (2023-05-21T09:22:24Z) - CIRCLE: Capture In Rich Contextual Environments [69.97976304918149]
We propose a novel motion acquisition system in which the actor perceives and operates in a highly contextual virtual world.
We present CIRCLE, a dataset containing 10 hours of full-body reaching motion from 5 subjects across nine scenes.
We use this dataset to train a model that generates human motion conditioned on scene information.
arXiv Detail & Related papers (2023-03-31T09:18:12Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - BEHAVE: Dataset and Method for Tracking Human Object Interactions [105.77368488612704]
We present the first full body human- object interaction dataset with multi-view RGBD frames and corresponding 3D SMPL and object fits along with the annotated contacts between them.
We use this data to learn a model that can jointly track humans and objects in natural environments with an easy-to-use portable multi-camera setup.
arXiv Detail & Related papers (2022-04-14T13:21:19Z) - Multi-Person 3D Motion Prediction with Multi-Range Transformers [16.62864429495888]
We introduce a Multi-Range Transformers model which contains of a local-range encoder for individual motion and a global-range encoder for social interactions.
Our model not only outperforms state-of-the-art methods on long-term 3D motion prediction, but also generates diverse social interactions.
arXiv Detail & Related papers (2021-11-23T18:41:13Z) - Stochastic Scene-Aware Motion Prediction [41.6104600038666]
We present a novel data-driven, synthesis motion method that models different styles of performing a given action with a target object.
Our method, called SAMP, for SceneAware Motion Prediction, generalizes to target objects of various geometries while enabling the character to navigate in cluttered scenes.
arXiv Detail & Related papers (2021-08-18T17:56:17Z) - Perpetual Motion: Generating Unbounded Human Motion [61.40259979876424]
We focus on long-term prediction; that is, generating long sequences of human motion that is plausible.
We propose a model to generate non-deterministic, textitever-changing, perpetual human motion.
We train this using a heavy-tailed function of the KL divergence of a white-noise Gaussian process, allowing latent sequence temporal dependency.
arXiv Detail & Related papers (2020-07-27T21:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.