論文の概要: Enhancing Multi-Agent Consensus through Third-Party LLM Integration: Analyzing Uncertainty and Mitigating Hallucinations in Large Language Models
- arxiv url: http://arxiv.org/abs/2411.16189v1
- Date: Mon, 25 Nov 2024 08:42:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:23:24.773238
- Title: Enhancing Multi-Agent Consensus through Third-Party LLM Integration: Analyzing Uncertainty and Mitigating Hallucinations in Large Language Models
- Title(参考訳): サードパーティLLM統合によるマルチエージェント合意の強化:大規模言語モデルにおける不確かさの分析と幻覚の緩和
- Authors: Zhihua Duan, Jialin Wang,
- Abstract要約: 大きな言語モデル(LLM)は、複雑な推論タスクを扱う際にも問題に直面します。
本稿では,知識境界を拡張するために異なるLSMを統合する新しい手法を提案する。
算術的データセットの実験により,本手法の有効性が検証された。
- 参考スコア(独自算出の注目度): 1.4582633500696451
- License:
- Abstract: Large Language Models (LLMs) still face challenges when dealing with complex reasoning tasks, often resulting in hallucinations, which limit the practical application of LLMs. To alleviate this issue, this paper proposes a new method that integrates different LLMs to expand the knowledge boundary, reduce dependence on a single model, and promote in-depth debate among agents. The main contributions include: 1) Introducing third-party LLMs to adjust the attention weights of agents through uncertainty estimation and confidence analysis, optimizing consensus formation in multi-agent systems; 2) Experiments on arithmetic datasets have validated the effectiveness of the method, surpassing traditional multi-agent baselines. This research provides a new perspective for large models to alleviate hallucination phenomena when dealing with complex tasks.
- Abstract(参考訳): 大きな言語モデル(LLM)は、複雑な推論タスクを扱う際にも問題に直面しており、しばしば幻覚を引き起こし、LLMの実践的応用を制限する。
そこで本研究では,知識境界の拡大,単一モデルへの依存の低減,エージェント間の深い議論を促進するために,異なるLLMを統合した新しい手法を提案する。
主な貢献は以下の通りである。
1) マルチエージェントシステムにおけるコンセンサス形成を最適化する不確実性推定及び信頼性分析を通じて、エージェントの注意重みを調整するための第三者LCMの導入
2) 算術データセットの実験により, 従来のマルチエージェントベースラインを超越した手法の有効性が検証された。
この研究は、複雑なタスクを扱う際の幻覚現象を軽減するために、大きなモデルに新たな視点を与える。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio [118.75449542080746]
本稿では,大規模マルチモーダルモデル(LMM)における幻覚に関する最初の系統的研究について述べる。
本研究は,幻覚に対する2つの重要な要因を明らかにした。
私たちの研究は、モダリティ統合の不均衡やトレーニングデータからのバイアスなど、重要な脆弱性を強調し、モダリティ間のバランスの取れた学習の必要性を強調した。
論文 参考訳(メタデータ) (2024-10-16T17:59:02Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
幻覚に対処するための反復モデルレベルのコントラスト学習(Iter-AHMCL)
本稿では,幻覚に対処するイテレーティブモデルレベルのコントラスト学習(Iter-AHMCL)を提案する。
論文 参考訳(メタデータ) (2024-10-16T00:15:40Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
大規模言語モデル(LLM)は、最近、強力な汎用ツールとして登場した。
本稿では,従来の行動分布としてLLMを扱い,それらをRLフレームワークに統合することを提案する。
LLMに基づくアクションの事前処理を取り入れることで、探索と複雑性の最適化が大幅に削減されることを示す。
論文 参考訳(メタデータ) (2024-10-10T13:54:11Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - Theory of Mind for Multi-Agent Collaboration via Large Language Models [5.2767999863286645]
本研究では,多エージェント協調型テキストゲームにおけるLarge Language Models (LLMs) ベースのエージェントを,理論オブマインド (ToM) 推論タスクを用いて評価する。
LLMをベースとしたエージェント間の創発的協調行動と高次マインド理論の実証を行った。
論文 参考訳(メタデータ) (2023-10-16T07:51:19Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。