論文の概要: Enhancing Agricultural Environment Perception via Active Vision and Zero-Shot Learning
- arxiv url: http://arxiv.org/abs/2409.12602v1
- Date: Thu, 19 Sep 2024 09:26:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 14:08:12.949706
- Title: Enhancing Agricultural Environment Perception via Active Vision and Zero-Shot Learning
- Title(参考訳): アクティブビジョンとゼロショット学習による農業環境認識の促進
- Authors: Michele Carlo La Greca, Mirko Usuelli, Matteo Matteucci,
- Abstract要約: この作業では、アクティブビジョン(AV)技術とゼロショット学習(ZSL)を活用して、ロボットが農業環境を知覚し、相互作用する能力を向上させる。
ROS 2で実装されたAVパイプラインは、3D環境再構築のためのNext-Best View(NBV)プランニングを統合している。
YOLO World + EfficientViT SAMなどのZSLセグメンテーションモデルは高速性能と正確なセグメンテーションを示す。
- 参考スコア(独自算出の注目度): 4.470499157873342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Agriculture, fundamental for human sustenance, faces unprecedented challenges. The need for efficient, human-cooperative, and sustainable farming methods has never been greater. The core contributions of this work involve leveraging Active Vision (AV) techniques and Zero-Shot Learning (ZSL) to improve the robot's ability to perceive and interact with agricultural environment in the context of fruit harvesting. The AV Pipeline implemented within ROS 2 integrates the Next-Best View (NBV) Planning for 3D environment reconstruction through a dynamic 3D Occupancy Map. Our system allows the robotics arm to dynamically plan and move to the most informative viewpoints and explore the environment, updating the 3D reconstruction using semantic information produced through ZSL models. Simulation and real-world experimental results demonstrate our system's effectiveness in complex visibility conditions, outperforming traditional and static predefined planning methods. ZSL segmentation models employed, such as YOLO World + EfficientViT SAM, exhibit high-speed performance and accurate segmentation, allowing flexibility when dealing with semantic information in unknown agricultural contexts without requiring any fine-tuning process.
- Abstract(参考訳): 農業は人間の耐久の基本であり、前例のない課題に直面している。
効率的で協力的で持続可能な農業方法の必要性はかつてないほど大きくなっていた。
この研究の中心的な貢献は、アクティブビジョン(AV)技術とゼロショット学習(ZSL)を活用して、果実収穫の文脈において、ロボットが農業環境を知覚し、相互作用する能力を向上させることである。
ROS 2で実装されたAV Pipelineは、ダイナミックな3D実行マップを通じて3D環境再構築のためのNext-Best View(NBV)プランニングを統合している。
本システムでは,ロボットアームを動的に設計し,最も情報性の高い視点に移動させ,環境を探索し,ZSLモデルを用いて生成した意味情報を用いて3次元再構成を更新する。
シミュレーションと実世界の実験により,複雑な可視性条件におけるシステムの有効性が示され,従来型および静的な事前定義された計画手法よりも優れていた。
YOLO World + EfficientViT SAMなどのZSLセグメンテーションモデルは、高速な性能と正確なセグメンテーションを示し、微調整プロセスを必要としない未知の農業環境での意味情報を扱う際の柔軟性を提供する。
関連論文リスト
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - 3D Hand Mesh Recovery from Monocular RGB in Camera Space [3.0453197258042213]
本研究では,ルート相対格子とルート回復タスクの並列処理を行うネットワークモデルを提案する。
暗黙的な学習手法を2次元ヒートマップに適用し、異なるサブタスク間の2次元キューの互換性を向上させる。
提案モデルは最先端のモデルに匹敵する。
論文 参考訳(メタデータ) (2024-05-12T05:36:37Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - High-fidelity 3D Reconstruction of Plants using Neural Radiance Field [10.245620447865456]
そこで本研究では,生産環境からの植物画像を構成する新しい植物データセットを提案する。
このデータセットは、農業の文脈におけるNeRFの利点と限界を包括的に探求することを目的とした、先駆的なイニシアチブである。
論文 参考訳(メタデータ) (2023-11-07T17:31:27Z) - 3D Pose Nowcasting: Forecast the Future to Improve the Present [65.65178700528747]
本研究では,骨格関節の3次元位置を正確に把握するために,深度データを利用した新しい視覚ベースシステムを提案する。
本稿では,現在のポーズ推定精度を高めるため,提案システムの有効性を示すPose Nowcastingの概念を紹介する。
実験的な評価は2つの異なるデータセットで行われ、正確かつリアルタイムなパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-08-24T16:40:47Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Big Earth Data and Machine Learning for Sustainable and Resilient
Agriculture [0.0]
この論文は、我々の時代の高品質でオープンな地球観測データによって提供される前例のない機会を認識している。
持続的で回復力のある農業のためのアプリケーションを開発するために、機械学習とビッグデータメソッドを導入している。
論文 参考訳(メタデータ) (2022-11-22T20:58:54Z) - Domain Adaptive 3D Pose Augmentation for In-the-wild Human Mesh Recovery [32.73513554145019]
Domain Adaptive 3D Pose Augmentation (DAPA)は、Wildのシナリオにおけるモデルの一般化能力を向上するデータ拡張手法である。
DAPAによる微調整が3DPWとAGORAのベンチマークの結果を効果的に改善できることを定量的に示す。
論文 参考訳(メタデータ) (2022-06-21T15:02:31Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - SAGCI-System: Towards Sample-Efficient, Generalizable, Compositional,
and Incremental Robot Learning [41.19148076789516]
上記の4つの要件を満たすために,SAGCIシステムと呼ばれる体系的な学習フレームワークを導入する。
本システムはまず,ロボットの手首に搭載されたカメラによって収集された生点雲を入力とし,URDFに代表される周囲環境の初期モデリングを生成する。
そのロボットは、対話的な知覚を利用して環境と対話し、URDFのオンライン検証と修正を行う。
論文 参考訳(メタデータ) (2021-11-29T16:53:49Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。