論文の概要: Online Graph Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation
- arxiv url: http://arxiv.org/abs/2411.01567v1
- Date: Sun, 03 Nov 2024 13:43:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:46.954789
- Title: Online Graph Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation
- Title(参考訳): 時間頂点適応フィルタによるオンライングラフ学習:理論から心細動へ
- Authors: Alexander Jenkins, Thiernithi Variddhisai, Ahmed El-Medany, Fu Siong Ng, Danilo Mandic,
- Abstract要約: グラフシフト演算子(GSO)の適応推定のためのオンラインアルゴリズムであるAdaCGPを導入する。
シミュレーションにより、AdaCGPは様々なグラフトポロジに対して一貫して良好に機能し、GSO推定において82%以上の改善が達成されることを示す。
AdaCGPのグラフ構造の変化を追跡する能力は、抗不整脈薬による心室細動動態の記録に示されている。
- 参考スコア(独自算出の注目度): 37.69303106863453
- License:
- Abstract: Graph Signal Processing (GSP) provides a powerful framework for analysing complex, interconnected systems by modelling data as signals on graphs. Recent advances in GSP have enabled the learning of graph structures from observed signals, but these methods often struggle with time-varying systems and real-time applications. Adaptive filtering techniques, while effective for online learning, have seen limited application in graph topology estimation from a GSP perspective. To this end, we introduce AdaCGP, an online algorithm for adaptive estimation of the Graph Shift Operator (GSO) from multivariate time series. The GSO is estimated from an adaptive time-vertex autoregressive model through recursive update formulae designed to address sparsity, shift-invariance and bias. Through simulations, we show that AdaCGP performs consistently well across various graph topologies, and achieves improvements in excess of 82% for GSO estimation compared to baseline adaptive vector autoregressive models. In addition, our online variable splitting approach for enforcing sparsity enables near-perfect precision in identifying causal connections while maintaining low false positive rates upon optimisation of the forecast error. Finally, AdaCGP's ability to track changes in graph structure is demonstrated on recordings of ventricular fibrillation dynamics in response to an anti-arrhythmic drug. AdaCGP is shown to be able to identify the stability of critical conduction patterns that may be maintaining the arrhythmia in an intuitive way, together with its potential to support diagnosis and treatment strategies.
- Abstract(参考訳): グラフ信号処理(GSP)は、グラフ上の信号としてデータをモデル化することによって、複雑な相互接続システムを分析する強力なフレームワークを提供する。
GSPの最近の進歩は、観測された信号からグラフ構造を学習することを可能にするが、これらの手法は時変システムやリアルタイムアプリケーションとしばしば競合する。
適応フィルタリング技術はオンライン学習に有効であるが,GSPの観点からのグラフトポロジ推定には限界がある。
そこで本稿では,多変量時系列からグラフシフト演算子(GSO)を適応的に推定するオンラインアルゴリズムであるAdaCGPを紹介する。
GSOは、分散性、シフト不変性、バイアスに対処するために設計された再帰的更新公式により、適応的時間頂点自己回帰モデルから推定される。
シミュレーションにより,AdaCGPは様々なグラフトポロジに対して一貫した性能を示し,ベースライン適応ベクトル自己回帰モデルと比較して,GSO推定において82%以上の改善が達成されている。
さらに,我々のオンライン変数分割手法は,予測誤差の最適化時に偽陽性率を低く保ちながら因果関係の同定において,ほぼ完璧な精度で精度を確保できる。
最後に、AdaCGPがグラフ構造の変化を追跡する能力は、抗不整脈薬による心室細動の動態の記録に示されている。
AdaCGPは、診断と治療戦略を支援する可能性とともに、不整脈を直感的に維持している可能性がある重要な伝導パターンの安定性を識別できることが示されている。
関連論文リスト
- A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network [0.0]
複数の慢性疾患(MCC)の出現を予測することは、早期介入とパーソナライズされた医療にとって重要である。
グラフニューラルネットワーク(GNN)は、MCCに見られるような複雑なグラフデータをモデリングするための効果的な手法である。
本稿では,データ分布を利用してグラフ構造を代表的に構築するGNNのための新しい生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T17:26:38Z) - Online Proximal ADMM for Graph Learning from Streaming Smooth Signals [9.34612743192798]
我々は,潜伏グラフ上でスムーズな観測ストリームを用いたオンライングラフ学習のための新しいアルゴリズムを開発した。
我々のモダス・オペランは、グラフ信号を逐次処理し、メモリと計算コストを抑えることです。
提案手法は,現在最先端のオンライングラフ学習ベースラインと比較して,(準最適性の観点から)追跡性能が向上することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:12:03Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - GSP-KalmanNet: Tracking Graph Signals via Neural-Aided Kalman Filtering [23.19392802641989]
ハイブリッドモデルベース/データ駆動手法を用いて,グラフ信号の追跡について検討する。
我々はGSP-KalmanNetを開発し、グラフィカルな測定から隠れたグラフィカルな状態を追跡する。
提案した GSP-KalmanNet は,精度の向上と実行時間性能の向上に加えて,モデルの誤特定に対する堅牢性の向上を実現している。
論文 参考訳(メタデータ) (2023-11-28T08:43:10Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
我々は、プログレッシブグラフ畳み込みネットワーク(PGCN)と呼ばれる新しいトラフィック予測フレームワークを提案する。
PGCNは、トレーニングおよびテストフェーズ中にオンライン入力データに段階的に適応することで、グラフのセットを構築する。
提案したモデルでは,すべてのデータセットの一貫性を保ちながら,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-02-18T02:15:44Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Efficient Variational Bayesian Structure Learning of Dynamic Graphical
Models [19.591265962713837]
時間変化のグラフィカルモデルの推定は、様々な社会的、経済的、生物学的、工学的システムにおいて最重要となる。
既存の手法では、グラフの間隔と時間的滑らかさを制御するパラメータを広範囲にチューニングする必要がある。
我々はBADGEという低複素性チューニング自由ベイズアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:19:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。