論文の概要: BGDB: Bernoulli-Gaussian Decision Block with Improved Denoising Diffusion Probabilistic Models
- arxiv url: http://arxiv.org/abs/2409.13116v1
- Date: Thu, 19 Sep 2024 22:52:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 11:52:12.898639
- Title: BGDB: Bernoulli-Gaussian Decision Block with Improved Denoising Diffusion Probabilistic Models
- Title(参考訳): BGDB: Denoising Diffusion Probabilistic Modelを改善したBernolli-Gaussian Decision Block
- Authors: Chengkun Sun, Jinqian Pan, Russell Stevens Terry, Jiang Bian, Jie Xu,
- Abstract要約: 生成モデルは、複雑な特徴空間を構築することによって識別的分類器を強化することができる。
本稿では,Bernolli-Gaussian Decision Block (BGDB)を提案する。
具体的には,改良拡散確率モデル(IDDPM)を用いてベルヌーイ裁判の確率をモデル化する。
- 参考スコア(独自算出の注目度): 8.332734198630813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models can enhance discriminative classifiers by constructing complex feature spaces, thereby improving performance on intricate datasets. Conventional methods typically augment datasets with more detailed feature representations or increase dimensionality to make nonlinear data linearly separable. Utilizing a generative model solely for feature space processing falls short of unlocking its full potential within a classifier and typically lacks a solid theoretical foundation. We base our approach on a novel hypothesis: the probability information (logit) derived from a single model training can be used to generate the equivalent of multiple training sessions. Leveraging the central limit theorem, this synthesized probability information is anticipated to converge toward the true probability more accurately. To achieve this goal, we propose the Bernoulli-Gaussian Decision Block (BGDB), a novel module inspired by the Central Limit Theorem and the concept that the mean of multiple Bernoulli trials approximates the probability of success in a single trial. Specifically, we utilize Improved Denoising Diffusion Probabilistic Models (IDDPM) to model the probability of Bernoulli Trials. Our approach shifts the focus from reconstructing features to reconstructing logits, transforming the logit from a single iteration into logits analogous to those from multiple experiments. We provide the theoretical foundations of our approach through mathematical analysis and validate its effectiveness through experimental evaluation using various datasets for multiple imaging tasks, including both classification and segmentation.
- Abstract(参考訳): 生成モデルは、複雑な特徴空間を構築することによって識別的分類器を強化し、複雑なデータセットの性能を向上させることができる。
従来の手法は、通常、より詳細な特徴表現を持つデータセットを増やしたり、次元性を高めて非線形データを線形分離可能にします。
特徴空間処理のみに生成モデルを用いることは、分類器内の全ポテンシャルを解き放つには足りず、典型的には堅固な理論的基礎を欠いている。
単一のモデルトレーニングから得られた確率情報(logit)は、複数のトレーニングセッションに相当するものを生成するために使用できる。
中心極限定理を利用すると、この合成された確率情報は真の確率に対してより正確に収束することが期待される。
この目的を達成するために,Bernolli-Gaussian Decision Block (BGDB) を提案する。
具体的には,改良拡散確率モデル(IDDPM)を用いてベルヌーイ裁判の確率をモデル化する。
当社のアプローチでは,機能再構築からロジット再構築に重点を移し,ロジットを単一イテレーションから複数の実験に類似したロジットに変換する。
本稿では,数式解析によるアプローチの理論的基礎を提供し,その有効性は,分類とセグメント化の両方を含む複数の画像処理タスクのために,様々なデータセットを用いて実験的に評価することで検証する。
関連論文リスト
- A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
本研究では,条件付き深部生成モデルの推定のための可能性に基づくアプローチの大規模サンプル特性について検討する。
その結果,条件分布を推定するための最大極大推定器の収束率を導いた。
論文 参考訳(メタデータ) (2024-10-02T20:46:21Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
現在のディープラーニングアプローチは、正確なサンプル確率を生み出す生成モデルに依存している。
この研究は、この制限を解除し、高度に表現力のある潜在変数モデルを採用する可能性を開放する手法を導入する。
我々は,データフリーなコンビネーション最適化におけるアプローチを実験的に検証し,幅広いベンチマーク問題に対して新しい最先端の手法を実現することを実証した。
論文 参考訳(メタデータ) (2024-06-03T17:55:02Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
データの多変量分布を学習することは、統計学と機械学習における中核的な課題である。
本研究では,多変量累積分布関数(CDF)を学習し,混合確率変数を扱えるようにすることを目的とする。
混合確率変数の合同CDFの任意のグリッドサンプリング版は、単純ベイズモデルとして普遍表現を許容することを示す。
提案モデルの性能を,回帰,サンプリング,データ計算を含むいくつかの合成および実データおよびアプリケーションで実証する。
論文 参考訳(メタデータ) (2022-10-13T16:18:46Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Parsimony-Enhanced Sparse Bayesian Learning for Robust Discovery of
Partial Differential Equations [5.584060970507507]
Parsimony Enhanced Sparse Bayesian Learning (PeSBL) 法は非線形力学系の部分微分方程式 (PDE) を解析するために開発された。
数値ケーススタディの結果,多くの標準力学系のPDEをPeSBL法を用いて正確に同定できることが示唆された。
論文 参考訳(メタデータ) (2021-07-08T00:56:11Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。