Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators
- URL: http://arxiv.org/abs/2409.13228v2
- Date: Sat, 29 Mar 2025 13:58:22 GMT
- Title: Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators
- Authors: Fabian Baumeister, Lukas Mack, Joerg Stueckler,
- Abstract summary: We propose a novel approach for non-prehensile manipulation which incrementally adapts a physics-based dynamics model for model-predictive control (MPC)<n>We evaluate our few-shot adaptation approach in object pushing experiments in simulation and with a real robot.
- Score: 5.483662156126757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot adaptation is an important capability for intelligent robots that perform tasks in open-world settings such as everyday environments or flexible production. In this paper, we propose a novel approach for non-prehensile manipulation which incrementally adapts a physics-based dynamics model for model-predictive control (MPC). The model prediction is aligned with a few examples of robot-object interactions collected with the MPC. This is achieved by using a parallelizable rigid-body physics simulation as dynamic world model and sampling-based optimization of the model parameters. In turn, the optimized dynamics model can be used for MPC using efficient sampling-based optimization. We evaluate our few-shot adaptation approach in object pushing experiments in simulation and with a real robot.
Related papers
- Pre-Trained Video Generative Models as World Simulators [59.546627730477454]
We propose Dynamic World Simulation (DWS) to transform pre-trained video generative models into controllable world simulators.
To achieve precise alignment between conditioned actions and generated visual changes, we introduce a lightweight, universal action-conditioned module.
Experiments demonstrate that DWS can be versatilely applied to both diffusion and autoregressive transformer models.
arXiv Detail & Related papers (2025-02-10T14:49:09Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.
We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.
In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model.
We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator.
arXiv Detail & Related papers (2022-05-27T07:39:28Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Learning physics-informed simulation models for soft robotic
manipulation: A case study with dielectric elastomer actuators [21.349079159359746]
Soft actuators offer a safe and adaptable approach to robotic tasks like gentle grasping and dexterous movement.
Creating accurate models to control such systems is challenging due to the complex physics of deformable materials.
This paper presents a framework that combines the advantages of differentiable simulator and Finite Element Method.
arXiv Detail & Related papers (2022-02-25T21:15:05Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Bayesian optimization of distributed neurodynamical controller models
for spatial navigation [1.9249287163937971]
We introduce the NeuroSwarms controller, in which agent-based interactions are modeled by analogy to neuronal network interactions.
This complexity precludes linear analyses of stability, controllability, and performance typically used to study conventional swarm models.
We present a framework for tuning dynamical controller models of autonomous multi-agent systems based on Bayesian Optimization.
arXiv Detail & Related papers (2021-10-31T21:43:06Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
We make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles.
The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data.
To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC.
arXiv Detail & Related papers (2021-09-10T12:09:18Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
We introduce a new differentiable physics benchmark called PasticineLab.
In each task, the agent uses manipulators to deform the plasticine into the desired configuration.
We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark.
arXiv Detail & Related papers (2021-04-07T17:59:23Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Meta-Reinforcement Learning for Adaptive Motor Control in Changing Robot
Dynamics and Environments [3.5309638744466167]
This work developed a meta-learning approach that adapts the control policy on the fly to different changing conditions for robust locomotion.
The proposed method constantly updates the interaction model, samples feasible sequences of actions of estimated the state-action trajectories, and then applies the optimal actions to maximize the reward.
arXiv Detail & Related papers (2021-01-19T12:57:12Z) - Contextual Latent-Movements Off-Policy Optimization for Robotic
Manipulation Skills [41.140532647789456]
We propose a novel view on handling the demonstrated trajectories for acquiring low-dimensional, non-linear latent dynamics.
We introduce a new contextual off-policy RL algorithm, named LAtent-Movements Policy Optimization (LAMPO)
LAMPO provides sample-efficient policies against common approaches in literature.
arXiv Detail & Related papers (2020-10-26T17:53:30Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
We introduce a differentiable physics simulator for rigid body dynamics.
In the context of trajectory optimization, we introduce a closed-loop model-predictive control algorithm.
arXiv Detail & Related papers (2020-01-22T03:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.