FPBoost: Fully Parametric Gradient Boosting for Survival Analysis
- URL: http://arxiv.org/abs/2409.13363v1
- Date: Fri, 20 Sep 2024 09:57:17 GMT
- Title: FPBoost: Fully Parametric Gradient Boosting for Survival Analysis
- Authors: Alberto Archetti, Eugenio Lomurno, Diego Piccinotti, Matteo Matteucci,
- Abstract summary: We propose a novel paradigm for survival model design based on the weighted sum of individual fully parametric hazard contributions.
The proposed model, which we call FPBoost, is the first algorithm to directly optimize the survival likelihood via gradient boosting.
- Score: 4.09225917049674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival analysis is a critical tool for analyzing time-to-event data and extracting valuable clinical insights. Recently, numerous machine learning techniques leveraging neural networks and decision trees have been developed for this task. Among these, the most successful approaches often rely on specific assumptions about the shape of the modeled hazard function. These assumptions include proportional hazard, accelerated failure time, or discrete estimation at a predefined set of time points. In this study, we propose a novel paradigm for survival model design based on the weighted sum of individual fully parametric hazard contributions. We build upon well-known ensemble techniques to deliver a novel contribution to the field by applying additive hazard functions, improving over approaches based on survival or cumulative hazard functions. Furthermore, the proposed model, which we call FPBoost, is the first algorithm to directly optimize the survival likelihood via gradient boosting. We evaluated our approach across a diverse set of datasets, comparing it against a variety of state-of-the-art models. The results demonstrate that FPBoost improves risk estimation, according to both concordance and calibration metrics.
Related papers
- Enhancing Visual Interpretability and Explainability in Functional Survival Trees and Forests [0.0]
This study investigates two key survival models: the Functional Survival Tree (FST) and the Functional Random Survival Forest (FRSF)
It introduces novel methods and tools to enhance the interpretability of FST models and improve the explainability of FRSF ensembles.
arXiv Detail & Related papers (2025-04-25T17:11:10Z) - Self-Consistent Equation-guided Neural Networks for Censored Time-to-Event Data [11.550402345767141]
We propose a novel approach to non-parametric estimation of the conditional survival functions using the generative adversarial networks leveraging self-consistent equations.
The proposed method is model-free and does not require any parametric assumptions on the structure of the conditional survival function.
arXiv Detail & Related papers (2025-03-12T06:24:35Z) - Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks [6.9648613217501705]
SurvivalBoost outperforms 12 state-of-the-art models on 4 real-life datasets.
It provides great calibration, the ability to predict across any time horizon, and computation times faster than existing methods.
arXiv Detail & Related papers (2024-10-22T07:33:34Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Deep End-to-End Survival Analysis with Temporal Consistency [49.77103348208835]
We present a novel Survival Analysis algorithm designed to efficiently handle large-scale longitudinal data.
A central idea in our method is temporal consistency, a hypothesis that past and future outcomes in the data evolve smoothly over time.
Our framework uniquely incorporates temporal consistency into large datasets by providing a stable training signal.
arXiv Detail & Related papers (2024-10-09T11:37:09Z) - Online Learning Approach for Survival Analysis [1.0499611180329806]
We introduce an online mathematical framework for survival analysis, allowing real time adaptation to dynamic environments and censored data.
This framework enables the estimation of event time distributions through an optimal second order online convex optimization algorithm-Online Newton Step (ONS)
arXiv Detail & Related papers (2024-02-07T08:15:30Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFun model represents a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF)
Our approach addresses several critical issues inherent in traditional TPP modeling.
Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction.
arXiv Detail & Related papers (2024-02-01T07:21:30Z) - Composite Survival Analysis: Learning with Auxiliary Aggregated
Baselines and Survival Scores [0.0]
Survival Analysis (SA) constitutes the default method for time-to-event modeling.
We show how to improve the training and inference of SA models by decoupling their full expression into (1) an aggregated baseline hazard, which captures the overall behavior of a given population, and (2) independently distributed survival scores, which model idiosyncratic probabilistic dynamics of its given members, in a fully parametric setting.
arXiv Detail & Related papers (2023-12-10T11:13:22Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - An Integrative Paradigm for Enhanced Stroke Prediction: Synergizing
XGBoost and xDeepFM Algorithms [1.064427783926208]
We propose an ensemble model that combines the power of XGBoost and xDeepFM algorithms.
Our work aims to improve upon existing stroke prediction models by achieving higher accuracy and robustness.
arXiv Detail & Related papers (2023-10-25T07:55:02Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Learning Survival Distribution with Implicit Survival Function [15.588273962274393]
We propose Implicit Survival Function (ISF) based on Implicit Neural Representation for survival distribution estimation without strong assumptions.
Experimental results show ISF outperforms the state-of-the-art methods in three public datasets.
arXiv Detail & Related papers (2023-05-24T02:51:29Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
We argue that the feature statistics can be properly manipulated to improve the generalization ability of deep learning models.
Common methods often consider the feature statistics as deterministic values measured from the learned features.
We improve the network generalization ability by modeling the uncertainty of domain shifts with synthesized feature statistics during training.
arXiv Detail & Related papers (2022-02-08T16:09:12Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Regression Trees for Cumulative Incidence Functions [3.0798859462300756]
We develop a novel approach to building regression trees for estimating cumulative incidence curves.
The proposed methods are easily implemented using the R statistical software package.
arXiv Detail & Related papers (2020-11-13T00:37:12Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
arXiv Detail & Related papers (2020-08-14T16:48:29Z) - Uncertainty in Gradient Boosting via Ensembles [37.808845398471874]
ensembles of gradient boosting models successfully detect anomalous inputs while having limited ability to improve the predicted total uncertainty.
We propose a concept of a virtual ensemble to get the benefits of an ensemble via only one gradient boosting model, which significantly reduces complexity.
arXiv Detail & Related papers (2020-06-18T14:11:27Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.