FPBoost: Fully Parametric Gradient Boosting for Survival Analysis
- URL: http://arxiv.org/abs/2409.13363v1
- Date: Fri, 20 Sep 2024 09:57:17 GMT
- Title: FPBoost: Fully Parametric Gradient Boosting for Survival Analysis
- Authors: Alberto Archetti, Eugenio Lomurno, Diego Piccinotti, Matteo Matteucci,
- Abstract summary: We propose a novel paradigm for survival model design based on the weighted sum of individual fully parametric hazard contributions.
The proposed model, which we call FPBoost, is the first algorithm to directly optimize the survival likelihood via gradient boosting.
- Score: 4.09225917049674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival analysis is a critical tool for analyzing time-to-event data and extracting valuable clinical insights. Recently, numerous machine learning techniques leveraging neural networks and decision trees have been developed for this task. Among these, the most successful approaches often rely on specific assumptions about the shape of the modeled hazard function. These assumptions include proportional hazard, accelerated failure time, or discrete estimation at a predefined set of time points. In this study, we propose a novel paradigm for survival model design based on the weighted sum of individual fully parametric hazard contributions. We build upon well-known ensemble techniques to deliver a novel contribution to the field by applying additive hazard functions, improving over approaches based on survival or cumulative hazard functions. Furthermore, the proposed model, which we call FPBoost, is the first algorithm to directly optimize the survival likelihood via gradient boosting. We evaluated our approach across a diverse set of datasets, comparing it against a variety of state-of-the-art models. The results demonstrate that FPBoost improves risk estimation, according to both concordance and calibration metrics.
Related papers
- Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks [6.9648613217501705]
SurvivalBoost outperforms 12 state-of-the-art models on 4 real-life datasets.
It provides great calibration, the ability to predict across any time horizon, and computation times faster than existing methods.
arXiv Detail & Related papers (2024-10-22T07:33:34Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Deep End-to-End Survival Analysis with Temporal Consistency [49.77103348208835]
We present a novel Survival Analysis algorithm designed to efficiently handle large-scale longitudinal data.
A central idea in our method is temporal consistency, a hypothesis that past and future outcomes in the data evolve smoothly over time.
Our framework uniquely incorporates temporal consistency into large datasets by providing a stable training signal.
arXiv Detail & Related papers (2024-10-09T11:37:09Z) - Online Learning Approach for Survival Analysis [1.0499611180329806]
We introduce an online mathematical framework for survival analysis, allowing real time adaptation to dynamic environments and censored data.
This framework enables the estimation of event time distributions through an optimal second order online convex optimization algorithm-Online Newton Step (ONS)
arXiv Detail & Related papers (2024-02-07T08:15:30Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - An Integrative Paradigm for Enhanced Stroke Prediction: Synergizing
XGBoost and xDeepFM Algorithms [1.064427783926208]
We propose an ensemble model that combines the power of XGBoost and xDeepFM algorithms.
Our work aims to improve upon existing stroke prediction models by achieving higher accuracy and robustness.
arXiv Detail & Related papers (2023-10-25T07:55:02Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Regression Trees for Cumulative Incidence Functions [3.0798859462300756]
We develop a novel approach to building regression trees for estimating cumulative incidence curves.
The proposed methods are easily implemented using the R statistical software package.
arXiv Detail & Related papers (2020-11-13T00:37:12Z) - Uncertainty in Gradient Boosting via Ensembles [37.808845398471874]
ensembles of gradient boosting models successfully detect anomalous inputs while having limited ability to improve the predicted total uncertainty.
We propose a concept of a virtual ensemble to get the benefits of an ensemble via only one gradient boosting model, which significantly reduces complexity.
arXiv Detail & Related papers (2020-06-18T14:11:27Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.