論文の概要: FPBoost: Fully Parametric Gradient Boosting for Survival Analysis
- arxiv url: http://arxiv.org/abs/2409.13363v2
- Date: Fri, 31 Jan 2025 09:32:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 22:46:12.708569
- Title: FPBoost: Fully Parametric Gradient Boosting for Survival Analysis
- Title(参考訳): FPBoost: 生存分析のための完全なパラメトリックグラディエントブースティング
- Authors: Alberto Archetti, Eugenio Lomurno, Diego Piccinotti, Matteo Matteucci,
- Abstract要約: FPBoostは、完全にパラメトリックなハザード関数の重み付け和と勾配上昇を組み合わせたサバイバルモデルである。
FPBoostはいかにしてハザード関数の普遍的な近似器であり、完全なイベント時モデリングの柔軟性を提供するかを示す。
- 参考スコア(独自算出の注目度): 4.09225917049674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival analysis is a statistical framework for modeling time-to-event data. It plays a pivotal role in medicine, reliability engineering, and social science research, where understanding event dynamics even with few data samples is critical. Recent advancements in machine learning, particularly those employing neural networks and decision trees, have introduced sophisticated algorithms for survival modeling. However, many of these methods rely on restrictive assumptions about the underlying event-time distribution, such as proportional hazard, time discretization, or accelerated failure time. In this study, we propose FPBoost, a survival model that combines a weighted sum of fully parametric hazard functions with gradient boosting. Distribution parameters are estimated with decision trees trained by maximizing the full survival likelihood. We show how FPBoost is a universal approximator of hazard functions, offering full event-time modeling flexibility while maintaining interpretability through the use of well-established parametric distributions. We evaluate concordance and calibration of FPBoost across multiple benchmark datasets, showcasing its robustness and versatility as a new tool for survival estimation.
- Abstract(参考訳): 生存分析(Survival analysis)は、時系列データのモデリングのための統計フレームワークである。
医療、信頼性工学、社会科学研究において重要な役割を担い、データサンプルが少ない場合でもイベントダイナミクスを理解することが重要である。
機械学習の最近の進歩、特にニューラルネットワークと決定木を利用するものは、生き残りモデリングのための洗練されたアルゴリズムを導入している。
しかしながら、これらの手法の多くは、比例的ハザード、時間離散化、あるいは失敗時間の加速といった、基礎となる事象時間分布に関する制限的な仮定に依存している。
本研究では,全パラメトリックハザード関数の重み付け和と勾配促進を組み合わせた生存モデルFPBoostを提案する。
分布パラメータは、生存可能性の最大化によって訓練された決定木から推定される。
本稿では、FPBoostがハザード関数の普遍的近似器であり、よく確立されたパラメトリック分布を用いて、解釈可能性を維持しつつ、完全なイベント時間モデリングの柔軟性を提供することを示す。
複数のベンチマークデータセット間でのFPBoostの一致と校正を評価し,その堅牢性と汎用性を生存推定の新しいツールとして示す。
関連論文リスト
- Enhancing Visual Interpretability and Explainability in Functional Survival Trees and Forests [0.0]
本研究では,FST(Functional Survival Tree)とFRSF(Functional Random Survival Forest)の2つの主要な生存モデルについて検討する。
FSTモデルの解釈可能性を高め、FRSFアンサンブルの説明可能性を向上させるための新しい手法とツールを導入している。
論文 参考訳(メタデータ) (2025-04-25T17:11:10Z) - Self-Consistent Equation-guided Neural Networks for Censored Time-to-Event Data [11.550402345767141]
本稿では,自己整合方程式を利用した生成逆数ネットワークを用いた条件付き生存関数の非パラメトリック推定手法を提案する。
提案手法はモデルフリーであり,条件付き生存関数の構造に関するパラメトリックな仮定は不要である。
論文 参考訳(メタデータ) (2025-03-12T06:24:35Z) - Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks [6.9648613217501705]
SurvivalBoostは、4つの実生活データセットで12の最先端モデルを上回っている。
優れたキャリブレーション、任意の時間軸にわたって予測する機能、既存のメソッドよりも高速な計算時間を提供する。
論文 参考訳(メタデータ) (2024-10-22T07:33:34Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
時間差差(TD)学習は、おそらく政策評価に最も広く使用されるものであり、この目的の自然な枠組みとして機能する。
本稿では,Polyak-Ruppert平均化と線形関数近似によるTD学習の整合性について検討し,既存の結果よりも3つの重要な改善点を得た。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Deep End-to-End Survival Analysis with Temporal Consistency [49.77103348208835]
本稿では,大規模長手データの処理を効率的に行うために,Survival Analysisアルゴリズムを提案する。
我々の手法における中心的な考え方は、時間とともにデータにおける過去と将来の成果が円滑に進化するという仮説である時間的一貫性である。
我々のフレームワークは、安定したトレーニング信号を提供することで、時間的一貫性を大きなデータセットに独自に組み込む。
論文 参考訳(メタデータ) (2024-10-09T11:37:09Z) - Online Learning Approach for Survival Analysis [1.0499611180329806]
生存分析のためのオンライン数学フレームワークを導入し、動的環境や検閲データへのリアルタイム適応を可能にする。
このフレームワークは、最適2階オンライン凸最適化アルゴリズムによるイベント時間分布の推定を可能にする-オンラインニュートンステップ(ONS)
論文 参考訳(メタデータ) (2024-02-07T08:15:30Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - Composite Survival Analysis: Learning with Auxiliary Aggregated
Baselines and Survival Scores [0.0]
Survival Analysis (SA) は時間対イベントモデリングのデフォルト手法である。
本研究は,SAモデルのトレーニングと推論を,(1)集団の全体行動を捉えた集合的ベースラインハザードに分解し,(2)個別に分布した生存スコア,(2)そのメンバーの慣用的確率的ダイナミクスを,完全にパラメトリックな設定でモデル化することで改善する方法を示す。
論文 参考訳(メタデータ) (2023-12-10T11:13:22Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - An Integrative Paradigm for Enhanced Stroke Prediction: Synergizing
XGBoost and xDeepFM Algorithms [1.064427783926208]
本稿では,XGBoostとxDeepFMアルゴリズムのパワーを組み合わせたアンサンブルモデルを提案する。
本研究の目的は,既存のストローク予測モデルの改良であり,精度とロバスト性の向上である。
論文 参考訳(メタデータ) (2023-10-25T07:55:02Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Learning Survival Distribution with Implicit Survival Function [15.588273962274393]
強い仮定を伴わない生存分布推定のためのインプシットニューラルネットワーク表現に基づくインプシット生存関数(ISF)を提案する。
実験の結果、ICFは3つの公開データセットで最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-05-24T02:51:29Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
本稿では,スパース関数オン・ファンクション回帰問題において特徴選択を行うための,新しい,柔軟な,超効率的なアプローチを提案する。
我々はそれをスカラー・オン・ファンクション・フレームワークに拡張する方法を示す。
AOMIC PIOP1による脳MRIデータへの応用について述べる。
論文 参考訳(メタデータ) (2023-03-26T19:41:17Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
特徴統計を適切に操作することで、ディープラーニングモデルの一般化能力を向上させることができると論じる。
一般的な手法では、特徴統計を学習した特徴から測定された決定論的値とみなすことが多い。
我々は、学習中に合成された特徴統計を用いて、領域シフトの不確かさをモデル化することにより、ネットワークの一般化能力を向上させる。
論文 参考訳(メタデータ) (2022-02-08T16:09:12Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Regression Trees for Cumulative Incidence Functions [3.0798859462300756]
累積入射曲線を推定するための回帰木構築のための新しい手法を開発した。
提案手法はR統計ソフトウェアを用いて容易に実装できる。
論文 参考訳(メタデータ) (2020-11-13T00:37:12Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - Uncertainty in Gradient Boosting via Ensembles [37.808845398471874]
勾配促進モデルのアンサンブルは、予測された総不確実性を改善する能力に制限があるにもかかわらず、異常な入力を検出することに成功した。
本稿では,1つの勾配押し上げモデルのみでアンサンブルの利点を得るための仮想アンサンブルの概念を提案する。
論文 参考訳(メタデータ) (2020-06-18T14:11:27Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。