論文の概要: Diffusion Models for Computational Neuroimaging: A Survey
- arxiv url: http://arxiv.org/abs/2502.06552v1
- Date: Mon, 10 Feb 2025 15:20:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:31:33.644948
- Title: Diffusion Models for Computational Neuroimaging: A Survey
- Title(参考訳): コンピュータ・ニューロイメージングのための拡散モデル:サーベイ
- Authors: Haokai Zhao, Haowei Lou, Lina Yao, Wei Peng, Ehsan Adeli, Kilian M Pohl, Yu Zhang,
- Abstract要約: コンピュータ・ニューロイメージング(Computational Neuroimaging)は、人間の認知と行動に対する機械的な洞察と予測ツールを提供するため、脳画像や信号を解析することを含む。
拡散モデルでは、自然画像の安定性と高品質な生成が示されている。
データエンハンスメント、疾患診断、脳の復号化など、様々な神経学的タスクの脳データ分析に適応することへの関心が高まっている。
- 参考スコア(独自算出の注目度): 20.24146298881525
- License:
- Abstract: Computational neuroimaging involves analyzing brain images or signals to provide mechanistic insights and predictive tools for human cognition and behavior. While diffusion models have shown stability and high-quality generation in natural images, there is increasing interest in adapting them to analyze brain data for various neurological tasks such as data enhancement, disease diagnosis and brain decoding. This survey provides an overview of recent efforts to integrate diffusion models into computational neuroimaging. We begin by introducing the common neuroimaging data modalities, follow with the diffusion formulations and conditioning mechanisms. Then we discuss how the variations of the denoising starting point, condition input and generation target of diffusion models are developed and enhance specific neuroimaging tasks. For a comprehensive overview of the ongoing research, we provide a publicly available repository at https://github.com/JoeZhao527/dm4neuro.
- Abstract(参考訳): コンピュータ・ニューロイメージング(Computational Neuroimaging)は、人間の認知と行動に対する機械的な洞察と予測ツールを提供するため、脳画像や信号を解析することを含む。
拡散モデルは、自然画像の安定性と高品質な生成を示す一方で、データ強化、疾患診断、脳復号といった様々な神経学的タスクの脳データ分析に適応することへの関心が高まっている。
本調査は,拡散モデルと計算ニューロイメージングの融合に向けた最近の取り組みの概要を提供する。
まず、一般的なニューロイメージングデータモダリティを導入し、拡散の定式化と条件付けの仕組みを踏襲する。
そこで本研究では,特定のニューロイメージングタスクをどのように発展させ,その効果について考察する。
現在進行中の研究の概要については、https://github.com/JoeZhao527/dm4neuro.comで公開されています。
関連論文リスト
- Single-neuron deep generative model uncovers underlying physics of neuronal activity in Ca imaging data [0.0]
自己回帰変分オートエンコーダ(AVAE)を用いた単一ニューロン表現学習のための新しいフレームワークを提案する。
我々のアプローチでは、スパイク推論アルゴリズムを必要とせずに、個々のニューロンの信号を縮小次元空間に埋め込む。
AVAEは、より情報的で差別的な潜在表現を生成することによって、従来の線形手法よりも優れている。
論文 参考訳(メタデータ) (2025-01-24T16:33:52Z) - A Review of Latent Representation Models in Neuroimaging [0.0]
ラテント表現モデルは、高次元のニューロイメージングデータを低次元のラテント空間に還元するように設計されている。
これらの潜伏空間をモデル化することで、研究者は脳の生物学と機能に関する洞察を得ることを望んでいる。
本総説では, 疾患診断や進行モニタリングなどの臨床応用だけでなく, 基礎的脳機構の解明にもこれらのモデルが用いられていることを論じる。
論文 参考訳(メタデータ) (2024-12-24T19:12:11Z) - Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models [2.600709013150986]
行動の神経基盤を理解することは神経科学の基本的な目標である。
私たちのアプローチは、BeNeDiff'と呼ばれるもので、まずきめ細やかな神経部分空間を識別します。
次に、最先端の生成拡散モデルを使用して、各潜伏因子の神経力学を解釈する行動ビデオを合成する。
論文 参考訳(メタデータ) (2024-10-12T18:28:56Z) - Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
我々は変分オートエンコーダと拡散モデルに基づく最先端の脳異常検出モデルの評価を行った。
以上の結果から、ダウン症候群の脳解剖を特徴付ける一次変化を効果的に検出するモデルが存在することが示唆された。
論文 参考訳(メタデータ) (2024-09-20T12:01:15Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。