Detection and Classification of Acute Lymphoblastic Leukemia Utilizing Deep Transfer Learning
- URL: http://arxiv.org/abs/2501.14228v1
- Date: Fri, 24 Jan 2025 04:16:03 GMT
- Title: Detection and Classification of Acute Lymphoblastic Leukemia Utilizing Deep Transfer Learning
- Authors: Md. Abu Ahnaf Mollick, Md. Mahfujur Rahman, D. M. Asadujjaman, Abdullah Tamim, Nosin Anjum Dristi, Md. Takbir Hossen,
- Abstract summary: This study proposes a novel approach for diagnosing leukemia across four stages.
We employed two Convolutional Neural Network (CNN) models as MobileNetV2 with an altered head and a custom model.
The custom model achieved an accuracy of 98.6%, while MobileNetV2 attained a superior accuracy of 99.69%.
- Score: 0.0
- License:
- Abstract: A mutation in the DNA of a single cell that compromises its function initiates leukemia,leading to the overproduction of immature white blood cells that encroach upon the space required for the generation of healthy blood cells.Leukemia is treatable if identified in its initial stages. However,its diagnosis is both arduous and time consuming. This study proposes a novel approach for diagnosing leukemia across four stages Benign,Early,Pre,and Pro using deep learning techniques.We employed two Convolutional Neural Network (CNN) models as MobileNetV2 with an altered head and a custom model. The custom model consists of multiple convolutional layers,each paired with corresponding max pooling layers.We utilized MobileNetV2 with ImageNet weights,adjusting the head to integrate the final results.The dataset used is the publicly available "Acute Lymphoblastic Leukemia (ALL) Image Dataset", and we applied the Synthetic Minority Oversampling Technique (SMOTE) to augment and balance the training dataset.The custom model achieved an accuracy of 98.6%, while MobileNetV2 attained a superior accuracy of 99.69%. The pretrained model showed promising results,indicating an increased likelihood of real-world application.
Related papers
- Acute Lymphoblastic Leukemia Diagnosis Employing YOLOv11, YOLOv8, ResNet50, and Inception-ResNet-v2 Deep Learning Models [0.0]
This study aims to utilize image processing and deep learning methodologies to achieve state-of-the-art results for the detection of Acute Lymphoblastic Leukemia (ALL)
By utilizing advanced deep learning models, namely, YOLOv8, YOLOv11, ResNet50 and Inception-ResNet-v2, the study achieves accuracy rates as high as 99.7%.
arXiv Detail & Related papers (2025-02-13T22:43:28Z) - Transforming Blood Cell Detection and Classification with Advanced Deep Learning Models: A Comparative Study [2.3942577670144423]
This study utilizes a YOLOv10 model trained on Roboflow data with images resized to 640x640 pixels across varying epochs.
The results show that increased training epochs significantly enhance accuracy, precision, and recall, particularly in real-time blood cell detection & classification.
arXiv Detail & Related papers (2024-10-21T06:23:13Z) - A Hybrid Feature Fusion Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Sample Using Gated Recurrent Unit and Uncertainty Quantification [1.024113475677323]
Leukemia is diagnosed by analyzing blood and bone marrow smears under a microscope, with additional cytochemical tests for confirmation.
Deep learning has provided advanced methods for classifying microscopic smear images, aiding in the detection of leukemic cells.
In this research, hybrid deep learning models were implemented to classify Acute lymphoblastic leukemia (ALL)
The proposed method achieved a remarkable detection accuracy rate of 100% on the ALL-IDB1 dataset, 98.07% on the ALL-IDB2 dataset, and 98.64% on the combined dataset.
arXiv Detail & Related papers (2024-10-18T15:23:34Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Automatic Classification of White Blood Cell Images using Convolutional Neural Network [0.0]
Human immune system contains white blood cells (WBC) that are good indicator of many diseases like bacterial infections, AIDS, cancer, spleen, etc.
Traditionally in laboratories, pathologists and hematologists analyze these blood cells through microscope and then classify them manually.
In this paper, first we have used different CNN pre-train models such as ResNet-50, InceptionV3, VGG16 and MobileNetV2 to automatically classify the white blood cells.
Inspired by these architectures, a framework has been proposed to automatically categorize the four kinds of white blood cells with increased accuracy.
arXiv Detail & Related papers (2024-09-19T16:39:46Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
Single-cell datasets often lack individual cell labels, making it challenging to identify cells associated with disease.
We introduce Mixture Modeling for Multiple Learning Instance (MMIL), an expectation method that enables the training and calibration of cell-level classifiers.
arXiv Detail & Related papers (2024-06-12T15:22:56Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
arXiv Detail & Related papers (2022-11-01T14:12:58Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
This article has automated the ALL detection task from microscopic cell images, employing deep Convolutional Neural Networks (CNNs)
Various data augmentations and pre-processing are incorporated for achieving a better generalization of the network.
Our proposed weighted ensemble model, using the kappa values of the ensemble candidates as their weights, has outputted a weighted F1-score of 88.6 %, a balanced accuracy of 86.2 %, and an AUC of 0.941 in the preliminary test set.
arXiv Detail & Related papers (2021-05-09T18:58:48Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.