論文の概要: Graph Similarity Regularized Softmax for Semi-Supervised Node Classification
- arxiv url: http://arxiv.org/abs/2409.13544v1
- Date: Fri, 20 Sep 2024 14:38:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 06:41:58.236426
- Title: Graph Similarity Regularized Softmax for Semi-Supervised Node Classification
- Title(参考訳): 半スーパービジョンノード分類のためのグラフ類似性正規化ソフトマックス
- Authors: Yiming Yang, Jun Liu, Wei Wan,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データ用に設計された強力なディープラーニングモデルである。
半教師付きノード分類におけるGNNに対するグラフ類似性正規化ソフトマックスを提案する。
- 参考スコア(独自算出の注目度): 33.297649538686045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are powerful deep learning models designed for graph-structured data, demonstrating effectiveness across a wide range of applications.The softmax function is the most commonly used classifier for semi-supervised node classification. However, the softmax function lacks spatial information of the graph structure. In this paper, we propose a graph similarity regularized softmax for GNNs in semi-supervised node classification. By incorporating non-local total variation (TV) regularization into the softmax activation function, we can more effectively capture the spatial information inherent in graphs. The weights in the non-local gradient and divergence operators are determined based on the graph's adjacency matrix. We apply the proposed method into the architecture of GCN and GraphSAGE, testing them on citation and webpage linking datasets, respectively. Numerical experiments demonstrate its good performance in node classification and generalization capabilities. These results indicate that the graph similarity regularized softmax is effective on both assortative and disassortative graphs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データのために設計された強力なディープラーニングモデルであり、ソフトマックス関数は半教師付きノード分類の最も一般的な分類法である。
しかし、ソフトマックス関数はグラフ構造の空間情報を欠いている。
本稿では,半教師付きノード分類におけるGNNのためのグラフ類似性正規化ソフトマックスを提案する。
非局所的全変動(TV)正規化をソフトマックス活性化関数に組み込むことで、グラフ固有の空間情報をより効果的に捉えることができる。
非局所勾配と発散作用素の重みはグラフの隣接行列に基づいて決定される。
本稿では,提案手法をGCNとGraphSAGEのアーキテクチャに適用し,それぞれを引用とWebページリンクデータセット上でテストする。
数値実験はノード分類と一般化能力において優れた性能を示す。
これらの結果は、グラフ類似性が正則化されたソフトマックスは、因数グラフと非因数グラフの両方に有効であることを示している。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - GRAN is superior to GraphRNN: node orderings, kernel- and graph
embeddings-based metrics for graph generators [0.6816499294108261]
本研究では,グラフ不変量の分布に関するカーネルベースのメトリクスと,グラフ埋め込み空間における多様体ベースのメトリクスとカーネルベースのメトリクスについて検討する。
グラフの2つのよく知られた生成モデルであるGraphRNNとGRANを比較し、ノード順序の影響を明らかにする。
論文 参考訳(メタデータ) (2023-07-13T12:07:39Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) は、グラフベースのデータセットで半教師付き分類を行うツールとして成功している。
本稿では,三部フィルタ空間が高密度グラフを対象とする新しいGCN変種を提案する。
論文 参考訳(メタデータ) (2020-08-03T08:48:41Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Unsupervised Graph Representation by Periphery and Hierarchical
Information Maximization [18.7475578342125]
グラフニューラルネットワークの発明により、ベクトル空間におけるノードとグラフ全体の表現の最先端性が向上した。
グラフ表現全体について、既存のグラフニューラルネットワークの大部分は、教師付き方法でグラフ分類損失に基づいてトレーニングされている。
本稿では,グラフ全体のベクトル表現を生成するための教師なしグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-06-08T15:50:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。