Certified Adversarial Robustness via Partition-based Randomized Smoothing
- URL: http://arxiv.org/abs/2409.13546v1
- Date: Fri, 20 Sep 2024 14:41:47 GMT
- Title: Certified Adversarial Robustness via Partition-based Randomized Smoothing
- Authors: Hossein Goli, Farzan Farnia,
- Abstract summary: We propose the Pixel Partitioning-based Randomized Smoothing (PPRS) methodology to boost the neural net's confidence score.
We demonstrate that the proposed PPRS algorithm improves the visibility of the images under additive Gaussian noise.
- Score: 9.054540533394926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A reliable application of deep neural network classifiers requires robustness certificates against adversarial perturbations. Gaussian smoothing is a widely analyzed approach to certifying robustness against norm-bounded perturbations, where the certified prediction radius depends on the variance of the Gaussian noise and the confidence level of the neural net's prediction under the additive Gaussian noise. However, in application to high-dimensional image datasets, the certified radius of the plain Gaussian smoothing could be relatively small, since Gaussian noise with high variances can significantly harm the visibility of an image. In this work, we propose the Pixel Partitioning-based Randomized Smoothing (PPRS) methodology to boost the neural net's confidence score and thus the robustness radius of the certified prediction. We demonstrate that the proposed PPRS algorithm improves the visibility of the images under additive Gaussian noise. We discuss the numerical results of applying PPRS to standard computer vision datasets and neural network architectures. Our empirical findings indicate a considerable improvement in the certified accuracy and stability of the prediction model to the additive Gaussian noise in randomized smoothing.
Related papers
- Certifying Adapters: Enabling and Enhancing the Certification of Classifier Adversarial Robustness [21.394217131341932]
We introduce a novel certifying adapters framework (CAF) that enables and enhances the certification of adversarial robustness.
CAF achieves improved certified accuracies when compared to methods based on random or denoised smoothing.
An ensemble of adapters enables a single pre-trained feature extractor to defend against a range of noise perturbation scales.
arXiv Detail & Related papers (2024-05-25T03:18:52Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
Adversarial attacks disturb deep neural networks (DNNs) in various algorithms and frameworks.
We propose a novel purification approach, referred to as guided diffusion model for purification (GDMP)
On our comprehensive experiments across various datasets, the proposed GDMP is shown to reduce the perturbations raised by adversarial attacks to a shallow range.
arXiv Detail & Related papers (2022-05-30T10:11:15Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Statistical Analysis of Signal-Dependent Noise: Application in Blind
Localization of Image Splicing Forgery [20.533239616846874]
In this work, we apply signal-dependent noise (SDN) to splicing localization tasks.
By building a maximum a posterior Markov random field (MAP-MRF) framework, we exploit the likelihood of noise to reveal the alien region of spliced objects.
Experimental results demonstrate that our method is effective and provides a comparative localization performance.
arXiv Detail & Related papers (2020-10-30T11:53:53Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z) - RAIN: A Simple Approach for Robust and Accurate Image Classification
Networks [156.09526491791772]
It has been shown that the majority of existing adversarial defense methods achieve robustness at the cost of sacrificing prediction accuracy.
This paper proposes a novel preprocessing framework, which we term Robust and Accurate Image classificatioN(RAIN)
RAIN applies randomization over inputs to break the ties between the model forward prediction path and the backward gradient path, thus improving the model robustness.
We conduct extensive experiments on the STL10 and ImageNet datasets to verify the effectiveness of RAIN against various types of adversarial attacks.
arXiv Detail & Related papers (2020-04-24T02:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.