論文の概要: A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network
- arxiv url: http://arxiv.org/abs/2409.13671v1
- Date: Fri, 20 Sep 2024 17:26:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 06:08:43.866969
- Title: A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network
- Title(参考訳): グラフ変分オートエンコーダと帯域最適化グラフニューラルネットを用いた複数条件の予測モデル作成フレームワーク
- Authors: Julian Carvajal Rico, Adel Alaeddini, Syed Hasib Akhter Faruqui, Susan P Fisher-Hoch, Joseph B Mccormick,
- Abstract要約: 複数の慢性疾患(MCC)の出現を予測することは、早期介入とパーソナライズされた医療にとって重要である。
グラフニューラルネットワーク(GNN)は、MCCに見られるような複雑なグラフデータをモデリングするための効果的な手法である。
本稿では,データ分布を利用してグラフ構造を代表的に構築するGNNのための新しい生成フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the emergence of multiple chronic conditions (MCC) is crucial for early intervention and personalized healthcare, as MCC significantly impacts patient outcomes and healthcare costs. Graph neural networks (GNNs) are effective methods for modeling complex graph data, such as those found in MCC. However, a significant challenge with GNNs is their reliance on an existing graph structure, which is not readily available for MCC. To address this challenge, we propose a novel generative framework for GNNs that constructs a representative underlying graph structure by utilizing the distribution of the data to enhance predictive analytics for MCC. Our framework employs a graph variational autoencoder (GVAE) to capture the complex relationships in patient data. This allows for a comprehensive understanding of individual health trajectories and facilitates the creation of diverse patient stochastic similarity graphs while preserving the original feature set. These variations of patient stochastic similarity graphs, generated from the GVAE decoder, are then processed by a GNN using a novel Laplacian regularization technique to refine the graph structure over time and improves the prediction accuracy of MCC. A contextual Bandit is designed to evaluate the stochastically generated graphs and identify the best-performing graph for the GNN model iteratively until model convergence. We validate the performance of the proposed contextual Bandit algorithm against $\varepsilon$-Greedy and multi-armed Bandit algorithms on a large cohort (n = 1,592) of patients with MCC. These advancements highlight the potential of the proposed approach to transform predictive healthcare analytics, enabling a more personalized and proactive approach to MCC management.
- Abstract(参考訳): 複数の慢性疾患(MCC)の出現を予測することは早期介入とパーソナライズされた医療にとって重要である。
グラフニューラルネットワーク(GNN)は、MCCに見られるような複雑なグラフデータをモデリングするための効果的な手法である。
しかし、GNNの重大な課題は、既存のグラフ構造に依存していることだ。
そこで本稿では,MCCの予測分析を強化するために,データの分布を利用してグラフ構造を代表的に構築するGNNの新たな生成フレームワークを提案する。
本フレームワークでは,患者データの複雑な関係を捉えるために,グラフ変分オートエンコーダ(GVAE)を採用している。
これにより、個々の健康トラジェクトリの包括的な理解が可能になり、元の特徴セットを保存しながら、多様な患者の確率的類似性グラフの作成が容易になる。
GVAEデコーダから生成されたこれらの患者の確率的類似性グラフのバリエーションは、新しいラプラシア正規化技術を用いてGNNによって処理され、時間とともにグラフ構造を洗練し、MCCの予測精度を向上させる。
文脈的帯域幅は、確率的に生成されたグラフを評価し、モデル収束までGNNモデルの最良の性能グラフを反復的に識別するように設計されている。
我々は,MCC患者の大コホート(n = 1,592)に対して,$\varepsilon$-Greedyおよびmulti-armed Banditアルゴリズムに対して,提案手法の有効性を検証した。
これらの進歩は、予測医療分析を変革するための提案されたアプローチの可能性を強調し、MCC管理に対してよりパーソナライズされ、積極的なアプローチを可能にする。
関連論文リスト
- Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data [7.433698348783128]
XST-CNN(eXG-Temporal Graph Conal Neural Network)は、不均一で不規則なマルチ時系列(MTS)データを処理するための新しいアーキテクチャである。
提案手法は,GCNNパイプラインを利用して時間的・時間的統合パイプライン内での時間的特徴を捉える。
ICU患者のマルチドラッグ抵抗(MDR)を予測するために,実世界の電子健康記録データを用いてXST-CNNを評価した。
論文 参考訳(メタデータ) (2024-11-01T22:53:17Z) - AdaMedGraph: Adaboosting Graph Neural Networks for Personalized Medicine [31.424781716926848]
我々は,複数の患者類似性グラフを構築するために重要な特徴を自動選択するアルゴリズム,我が社の提案するアルゴリズムを提案する。
実世界の医療シナリオを2つ評価し,優れた成績を示した。
論文 参考訳(メタデータ) (2023-11-24T06:27:25Z) - Self-supervision meets kernel graph neural models: From architecture to
augmentations [36.388069423383286]
カーネルグラフニューラルネットワーク(KGNN)の設計と学習の改善
我々はLGA(Latent graph augmentation)と呼ばれる新しい構造保存グラフデータ拡張法を開発した。
提案モデルは,最先端のグラフ表現学習フレームワークに匹敵する,あるいは時として優れる性能を実現する。
論文 参考訳(メタデータ) (2023-10-17T14:04:22Z) - Graph data modelling for outcome prediction in oropharyngeal cancer
patients [38.37247384790338]
グラフニューラルネットワーク(GNN)は、疾患の分類と予後予測のタスクにおいて、医療分野でますます人気が高まっている。
口腔咽頭癌(OPC)患者の2次予後予測のためのインダクティブ・ラーニング・セットアップで検討した患者ハイパーグラフ・ネットワーク(PHGN)を提案する。
論文 参考訳(メタデータ) (2023-10-04T16:09:35Z) - MaxCorrMGNN: A Multi-Graph Neural Network Framework for Generalized
Multimodal Fusion of Medical Data for Outcome Prediction [3.2889220522843625]
我々はMaxCorr MGNNと呼ばれる革新的な融合手法を開発し、患者内および患者間の非線形モダリティ相関をモデル化する。
次に,多層グラフにおけるタスクインフォームド推論のための汎用多層グラフニューラルネットワーク(MGNN)を初めて設計する。
我々は,本モデルを結核データセットにおける結果予測タスクとして評価し,最先端のニューラルネットワーク,グラフベース,従来の融合技術より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-07-13T23:52:41Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。