Efficient Measurement-Driven Eigenenergy Estimation with Classical Shadows
- URL: http://arxiv.org/abs/2409.13691v1
- Date: Fri, 20 Sep 2024 17:59:56 GMT
- Title: Efficient Measurement-Driven Eigenenergy Estimation with Classical Shadows
- Authors: Yizhi Shen, Alex Buzali, Hong-Ye Hu, Katherine Klymko, Daan Camps, Susanne F. Yelin, Roel Van Beeumen,
- Abstract summary: We introduce the framework of multi-observable dynamic mode decomposition (MODMD)
We replace typical Hadamard-test circuits with a protocol designed to predict low-rank observables.
Our work paves the path for efficient designs of measurement-driven algorithms on near-term and early fault-tolerant quantum devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum algorithms exploiting real-time evolution under a target Hamiltonian have demonstrated remarkable efficiency in extracting key spectral information. However, the broader potential of these methods, particularly beyond ground state calculations, is underexplored. In this work, we introduce the framework of multi-observable dynamic mode decomposition (MODMD), which combines the observable dynamic mode decomposition, a measurement-driven eigensolver tailored for near-term implementation, with classical shadow tomography. MODMD leverages random scrambling in the classical shadow technique to construct, with exponentially reduced resource requirements, a signal subspace that encodes rich spectral information. Notably, we replace typical Hadamard-test circuits with a protocol designed to predict low-rank observables, thus marking a new application of classical shadow tomography for predicting many low-rank observables. We establish theoretical guarantees on the spectral approximation from MODMD, taking into account distinct sources of error. In the ideal case, we prove that the spectral error scales as $\exp(- \Delta E t_{\rm max})$, where $\Delta E$ is the Hamiltonian spectral gap and $t_{\rm max}$ is the maximal simulation time. This analysis provides a rigorous justification of the rapid convergence observed across simulations. To demonstrate the utility of our framework, we consider its application to fundamental tasks, such as determining the low-lying, i.e. ground or excited, energies of representative many-body systems. Our work paves the path for efficient designs of measurement-driven algorithms on near-term and early fault-tolerant quantum devices.
Related papers
- Model Order Reduction for Open Quantum Systems Based on Measurement-adapted Time-coarse Graining [9.507267560064669]
We present a model order reduction technique to reduce the time complexity of open quantum systems.
The method organizes corrections to the lowest-order model which aligns with the RWA Hamiltonian in certain limits.
We derive the fourth-order EQME for a challenging problem related to the dynamics of a superconducting qubit.
arXiv Detail & Related papers (2024-10-30T15:26:42Z) - Optimal Quantum Overlapping Tomography [2.555222031881788]
Partial tomography has emerged as a promising approach for characterizing complex quantum systems.
We introduce a unified framework for optimal overlapping tomography by mapping the problem to clique cover model.
We experimentally validate the feasibility of our schemes on practical nuclear spin processor.
arXiv Detail & Related papers (2024-10-17T12:03:43Z) - Spectral Densities, Structured Noise and Ensemble Averaging within Open Quantum Dynamics [0.0]
We present advances for the Numerical Integration of Schr"odinger Equation (NISE)
We introduce a modified ensemble-averaging procedure that improves the long-time behavior of the thermalized variant of the NISE scheme.
We demonstrate how to use the NISE in conjunction with (highly) structured spectral densities by utilizing a noise generating algorithm for arbitrary structured noise.
arXiv Detail & Related papers (2024-10-05T22:00:19Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Classical Shadow Tomography through Many-body Localization Dynamics [4.923287660970805]
We introduce an alternative approach founded on the dynamics of many-body localization.
We demonstrate that our scheme achieves remarkable efficiency comparable to shallow circuits.
arXiv Detail & Related papers (2023-09-03T19:50:28Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Algorithmic Shadow Spectroscopy [0.0]
We present a simulator-agnostic quantum algorithm for estimating energy gaps using very few circuit repetitions (shots) and no extra resources (ancilla qubits)
We demonstrate that our method is intuitively easy to use in practice, robust against gate noise, to a new type of algorithmic error mitigation technique, and uses orders of magnitude fewer number of shots than typical near-term quantum algorithms -- as low as 10 shots per timestep is sufficient.
arXiv Detail & Related papers (2022-12-21T14:23:48Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.