Classical Simulability of Quantum Circuits with Shallow Magic Depth
- URL: http://arxiv.org/abs/2409.13809v2
- Date: Thu, 06 Feb 2025 16:55:38 GMT
- Title: Classical Simulability of Quantum Circuits with Shallow Magic Depth
- Authors: Yifan Zhang, Yuxuan Zhang,
- Abstract summary: We investigate the classical simulability of quantum circuits with alternating Clifford and $T$ layers.
Surprisingly, with the addition of just one $T$ gate layer or merely replacing all $T$ gates with $Tfrac12$, the Pauli evaluation task reveals a sharp complexity transition from P to GapP-complete.
- Score: 12.757419723444956
- License:
- Abstract: Quantum magic is a necessary resource for quantum computers to be not efficiently simulable by classical computers. Previous results have linked the amount of quantum magic, characterized by the number of $T$ gates or stabilizer rank, to classical simulability. However, the effect of the distribution of quantum magic on the hardness of simulating a quantum circuit remains open. In this work, we investigate the classical simulability of quantum circuits with alternating Clifford and $T$ layers across three tasks: amplitude estimation, sampling, and evaluating Pauli observables. In the case where all $T$ gates are distributed in a single layer, performing amplitude estimation and sampling to multiplicative error are already classically intractable under reasonable assumptions, but Pauli observables are easy to evaluate. Surprisingly, with the addition of just one $T$ gate layer or merely replacing all $T$ gates with $T^{\frac{1}{2}}$, the Pauli evaluation task reveals a sharp complexity transition from P to GapP-complete. Nevertheless, when the precision requirement is relaxed to 1/poly($n$) additive error, we are able to give a polynomial time classical algorithm to compute amplitudes, Pauli observable, and sampling from $\log(n)$ sized marginal distribution for any magic-depth-one circuit that is decomposable into a product of diagonal gates. Our research provides new techniques to simulate highly magical circuits while shedding light on their complexity and their significant dependence on the magic depth.
Related papers
- Classical simulability of Clifford+T circuits with Clifford-augmented matrix product states [0.552480439325792]
We investigate the classical simulatability of $N$-qubit Clifford circuits doped with $t$ number of $T$-gates.
We use a simple disentangling algorithm to reduce the entanglement of the MPS component in CAMPS using control-Pauli gates.
This work establishes a versatile framework based on CAMPS for understanding classical simulatability of $t$-doped circuits.
arXiv Detail & Related papers (2024-12-23T01:26:40Z) - Pauli path simulations of noisy quantum circuits beyond average case [0.3277163122167433]
For random quantum circuits on $n$ qubits of depth, the task of sampling from the output state can be efficiently performed classically using a Pauli path method.
We derive sufficient conditions for simulatability in terms of noise rate and the fraction of gates that are T gates, and show that if noise is introduced at a faster rate, the simulation becomes classically easy.
arXiv Detail & Related papers (2024-07-22T21:58:37Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach [1.806183113759115]
Large-scale variational quantum algorithms are widely recognized as a potential pathway to achieve quantum advantages.
We present a novel $gammaPPP method based on the integral path of observables back-propagation on paths.
We conduct classical simulations of IBM's zeronoised experimental results on the 127-qubit Eagle processor.
arXiv Detail & Related papers (2023-06-09T10:42:07Z) - Exponential quantum speedup in simulating coupled classical oscillators [1.9398245011675082]
We present a quantum algorithm for the classical dynamics of $2n$ coupled oscillators.
Our approach leverages a mapping between the Schr"odinger equation and Newton's equation for harmonic potentials.
We show that our approach solves a potentially practical application with an exponential speedup over classical computers.
arXiv Detail & Related papers (2023-03-23T03:24:03Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Learning k-qubit Quantum Operators via Pauli Decomposition [11.498089180181365]
Motivated by the limited qubit capacity of current quantum systems, we study the quantum sample complexity of $k$-qubit quantum operators.
We show that the quantum sample complexity of $k$-qubit quantum operations is comparable to the classical sample complexity of their counterparts.
arXiv Detail & Related papers (2021-02-10T01:20:55Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.