論文の概要: Data Pruning via Separability, Integrity, and Model Uncertainty-Aware Importance Sampling
- arxiv url: http://arxiv.org/abs/2409.13915v1
- Date: Fri, 20 Sep 2024 21:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:39:44.087758
- Title: Data Pruning via Separability, Integrity, and Model Uncertainty-Aware Importance Sampling
- Title(参考訳): 分離性、統合性、モデル不確実性によるデータプルーニング-重要度サンプリング
- Authors: Steven Grosz, Rui Zhao, Rajeev Ranjan, Hongcheng Wang, Manoj Aggarwal, Gerard Medioni, Anil Jain,
- Abstract要約: 本稿では,重要サンプリングに基づく新しいプルーニング指標とプルーニング手順を導入することにより,画像分類のための既存のデータプルーニング手法を改善する。
提案したプルーニング指標は、データ分離性、データの完全性、モデルの不確実性を明確に説明している。
サンプリング手順はプルーニング比に適応し、クラス内分離とクラス間分離の両方を考慮してプルーニングの有効性をさらに高める。
- 参考スコア(独自算出の注目度): 6.367139817832176
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper improves upon existing data pruning methods for image classification by introducing a novel pruning metric and pruning procedure based on importance sampling. The proposed pruning metric explicitly accounts for data separability, data integrity, and model uncertainty, while the sampling procedure is adaptive to the pruning ratio and considers both intra-class and inter-class separation to further enhance the effectiveness of pruning. Furthermore, the sampling method can readily be applied to other pruning metrics to improve their performance. Overall, the proposed approach scales well to high pruning ratio and generalizes better across different classification models, as demonstrated by experiments on four benchmark datasets, including the fine-grained classification scenario.
- Abstract(参考訳): 本稿では,重要サンプリングに基づく新しいプルーニング指標とプルーニング手順を導入することにより,画像分類のための既存のデータプルーニング手法を改善する。
提案手法は,データ分離性,データの完全性,モデルの不確実性を明示的に考慮し,サンプリング手順はプルーニング率に適応し,クラス内分離とクラス間分離の両方を考慮し,プルーニングの有効性をさらに向上させる。
さらに、サンプリング法は、他のプルーニング指標にも容易に適用でき、性能が向上する。
全体として、提案手法はハイプルーニング比にうまくスケールし、より詳細な分類シナリオを含む4つのベンチマークデータセットの実験で示されるように、異なる分類モデルにまたがってより良く一般化される。
関連論文リスト
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - DRoP: Distributionally Robust Pruning [11.930434318557156]
我々は、訓練されたモデルの分類バイアスにデータプルーニングが与える影響について、最初の系統的研究を行う。
そこで我々はDRoPを提案する。DRoPは,標準的なコンピュータビジョンベンチマークにおいて,その性能を実証的に実証し,分散的に頑健な手法である。
論文 参考訳(メタデータ) (2024-04-08T14:55:35Z) - Bayesian Estimate of Mean Proper Scores for Diversity-Enhanced Active
Learning [6.704927458661697]
期待されている損失削減(ELR)は、分類誤差の低減と、同じフレームワークに適合するより一般的なコストのベイズ推定に焦点を当てている。
本研究では,平均値スコア(BEMPS)のベイズ推定を行い,厳密なスコアの増加を推定する。
我々は,BEMPSが頑健な獲得関数とよく校正された分類器を出力し,他の試験よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-12-15T11:02:17Z) - Data Pruning via Moving-one-Sample-out [61.45441981346064]
我々は移動1サンプルアウト(MoSo)と呼ばれる新しいデータ処理手法を提案する。
MoSoは、トレーニングセットから最も分かりにくいサンプルを特定し、削除することを目的としている。
実験結果から,MoSoは高プルーニング比で高い性能劣化を効果的に緩和することが示された。
論文 参考訳(メタデータ) (2023-10-23T08:00:03Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
適応次元の削減によりさらに改善された変分ベイズ推定に基づく新しいクラスタリング法を提案する。
提案手法は,Few-Shotベンチマークにおける現実的非バランスなトランスダクティブ設定の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-09-18T10:29:02Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
分類のための非パラメトリック後処理ステップである交互正規化(CAN)を用いた分類を導入する。
CANは、予測されたクラス確率分布を再調整することで、挑戦的な例の分類精度を向上させる。
多様な分類課題にまたがってその効果を実証的に示す。
論文 参考訳(メタデータ) (2021-09-28T02:55:42Z) - Weight-of-evidence 2.0 with shrinkage and spline-binning [3.925373521409752]
分類予測器を変換するための形式化、データ駆動、強力な方法を提案する。
我々は,重み付け手法を拡張し,縮尺推定器を用いて比例を推定することを提案する。
本稿では,提案手法の有効性を示す詐欺検出セットにおける一連の実験結果を示す。
論文 参考訳(メタデータ) (2021-01-05T13:13:16Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。