High-Resolution Flood Probability Mapping Using Generative Machine Learning with Large-Scale Synthetic Precipitation and Inundation Data
- URL: http://arxiv.org/abs/2409.13936v2
- Date: Tue, 18 Mar 2025 01:58:53 GMT
- Title: High-Resolution Flood Probability Mapping Using Generative Machine Learning with Large-Scale Synthetic Precipitation and Inundation Data
- Authors: Lipai Huang, Federico Antolini, Ali Mostafavi, Russell Blessing, Matthew Garcia, Samuel D. Brody,
- Abstract summary: High-resolution flood probability maps are instrumental for assessing flood risk but are often limited by the availability of historical data.<n>This study introduces Precipitation-Flood Depth Generative Pipeline, a novel methodology that leverages generative machine learning to generate large-scale synthetic inundation data.<n>After generating 10,000 synthetic events, flood probability maps are created for various inundation depths.
- Score: 0.9719868595277402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-resolution flood probability maps are instrumental for assessing flood risk but are often limited by the availability of historical data. Additionally, producing simulated data needed for creating probabilistic flood maps using physics-based models involves significant computation and time effort, which inhibit its feasibility. To address this gap, this study introduces Precipitation-Flood Depth Generative Pipeline, a novel methodology that leverages generative machine learning to generate large-scale synthetic inundation data to produce probabilistic flood maps. With a focus on Harris County, Texas, Precipitation-Flood Depth Generative Pipeline begins with training a cell-wise depth estimator using a number of precipitation-flood events model with a physics-based model. This cell-wise depth estimator, which emphasizes precipitation-based features, outperforms universal models. Subsequently, the Conditional Generative Adversarial Network (CTGAN) is used to conditionally generate synthetic precipitation point cloud, which are filtered using strategic thresholds to align with realistic precipitation patterns. Hence, a precipitation feature pool is constructed for each cell, enabling strategic sampling and the generation of synthetic precipitation events. After generating 10,000 synthetic events, flood probability maps are created for various inundation depths. Validation using similarity and correlation metrics confirms the accuracy of the synthetic depth distributions. The Precipitation-Flood Depth Generative Pipeline provides a scalable solution to generate synthetic flood depth data needed for high-resolution flood probability maps, which can enhance flood mitigation planning.
Related papers
- TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
This study proposes a novel deep learning based rain generator, which fully takes the physical generation mechanism underlying rains into consideration.
Its significance lies in that the generator not only elaborately design essential elements of the rain to simulate expected rains, but also finely adapt to complicated and diverse practical rainy images.
Our unpaired generation experiments demonstrate that the rain generated by the proposed rain generator is not only of higher quality, but also more effective for deraining and downstream tasks.
arXiv Detail & Related papers (2024-03-15T03:27:39Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
We propose CasCast, a cascaded framework composed of a deterministic and a probabilistic part to decouple predictions for mesoscale precipitation distributions and small-scale patterns.
CasCast significantly surpasses the baseline (up to +91.8%) for regional extreme-precipitation nowcasting.
arXiv Detail & Related papers (2024-02-06T08:30:47Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - A comparison of machine learning surrogate models of street-scale
flooding in Norfolk, Virginia [0.0]
Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides.
High-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, but their computational complexity renders them unsuitable for real-time applications.
This study compares the performance of a surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
arXiv Detail & Related papers (2023-07-26T13:24:01Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
Fast updates based on real-time data are essential when drilling in complex reservoirs with high uncertainties in pre-drill models.
We propose a generative adversarial deep neural network (GAN) trained to reproduce geologically consistent 2D sections of fluvial successions.
In our example, the method reduces uncertainty and correctly predicts most major geological features up to 500 meters ahead of drill-bit.
arXiv Detail & Related papers (2022-07-04T12:52:38Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - Multioutput Gaussian Processes with Functional Data: A Study on Coastal
Flood Hazard Assessment [0.0]
We introduce a surrogate model that accounts for time-varying inputs and provides information on spatially varying inland flooding.
In several experiments, we demonstrate the versatility of the model for both learning maps and inferring unobserved maps.
We conclude that our framework is a promising approach for forecast and early-warning systems.
arXiv Detail & Related papers (2020-07-28T08:15:17Z) - Breaking the Limits of Remote Sensing by Simulation and Deep Learning
for Flood and Debris Flow Mapping [13.167695669500391]
We propose a framework that estimates inundation depth and debris-flow-induced topographic deformation from remote sensing imagery.
A water and debris flow simulator generates training data for various artificial disaster scenarios.
We show that regression models based on Attention U-Net and LinkNet architectures trained on such synthetic data can predict the maximum water level and topographic deformation.
arXiv Detail & Related papers (2020-06-09T10:59:15Z) - Data-driven Flood Emulation: Speeding up Urban Flood Predictions by Deep
Convolutional Neural Networks [0.0]
This paper proposes that the prediction of maximum water depths can be considered as an image-to-image translation problem.
The results are generated from input elevations using the information learned from data rather than by conducting simulations.
The proposed neural network can potentially be applied to different but relevant problems including flood predictions for urban layout planning.
arXiv Detail & Related papers (2020-04-17T16:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.