論文の概要: Deep learning for fast segmentation and critical dimension metrology & characterization enabling AR/VR design and fabrication
- arxiv url: http://arxiv.org/abs/2409.13951v1
- Date: Fri, 20 Sep 2024 23:54:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:28:44.047820
- Title: Deep learning for fast segmentation and critical dimension metrology & characterization enabling AR/VR design and fabrication
- Title(参考訳): 高速セグメンテーションのための深層学習とAR/VR設計と製作を可能にする臨界次元メトロジーとキャラクタリゼーション
- Authors: Kundan Chaudhary, Subhei Shaar, Raja Muthinti,
- Abstract要約: 我々は,電子顕微鏡画像の多種多様なデータセットを用いて,事前訓練されたセグメンテーションモデル(SAM)の微調整について報告する。
低ランク適応(LoRA)のような手法を用いて、トレーニング時間を短縮し、ROI抽出の精度を高める。
モデルが見えない画像に一般化する能力はゼロショット学習を促進し、CD抽出モデルをサポートする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantitative analysis of microscopy images is essential in the design and fabrication of components used in augmented reality/virtual reality (AR/VR) modules. However, segmenting regions of interest (ROIs) from these complex images and extracting critical dimensions (CDs) requires novel techniques, such as deep learning models which are key for actionable decisions on process, material and device optimization. In this study, we report on the fine-tuning of a pre-trained Segment Anything Model (SAM) using a diverse dataset of electron microscopy images. We employed methods such as low-rank adaptation (LoRA) to reduce training time and enhance the accuracy of ROI extraction. The model's ability to generalize to unseen images facilitates zero-shot learning and supports a CD extraction model that precisely extracts CDs from the segmented ROIs. We demonstrate the accurate extraction of binary images from cross-sectional images of surface relief gratings (SRGs) and Fresnel lenses in both single and multiclass modes. Furthermore, these binary images are used to identify transition points, aiding in the extraction of relevant CDs. The combined use of the fine-tuned segmentation model and the CD extraction model offers substantial advantages to various industrial applications by enhancing analytical capabilities, time to data and insights, and optimizing manufacturing processes.
- Abstract(参考訳): 拡張現実/バーチャルリアリティ(AR/VR)モジュールで使用されるコンポーネントの設計と製造には,顕微鏡画像の定量的解析が不可欠である。
しかし、これらの複雑な画像から関心領域(ROI)を分割し、臨界次元(CD)を抽出するには、プロセス、材料、デバイス最適化において実行可能な決定の鍵となるディープラーニングモデルのような新しい技術が必要である。
本研究では,電子顕微鏡画像の多種多様なデータセットを用いて,事前学習したセグメンテーションモデル(SAM)の微調整について報告する。
低ランク適応(LoRA)などの手法を用いて,トレーニング時間を短縮し,ROI抽出の精度を高める。
モデルが見えない画像に一般化する能力はゼロショット学習を促進し、セグメント化されたROIからCDを正確に抽出するCD抽出モデルをサポートする。
本研究では, 表面緩和格子(SRG)とフレネルレンズの断面画像から, 単一モードとマルチクラスモードの両方で, バイナリ画像の正確な抽出を実証する。
さらに、これらのバイナリ画像は、関連するCDの抽出を補助する遷移点を特定するために使用される。
微調整セグメンテーションモデルとCD抽出モデルの組み合わせは、分析能力の向上、データと洞察の時間の向上、製造プロセスの最適化によって、様々な産業用途に多大な利点をもたらす。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - ATOMMIC: An Advanced Toolbox for Multitask Medical Imaging Consistency to facilitate Artificial Intelligence applications from acquisition to analysis in Magnetic Resonance Imaging [0.10434396204054465]
ATOMMICはオープンソースのツールボックスで、加速MRIの再構成と分析のためにAIアプリケーションを合理化する。
ATOMMICは、DLネットワークを使用して複数のタスクを実装し、MRI領域における一般化をターゲットとして、MultiTask Learning (MTL)が関連するタスクを統合化できるようにする。
論文 参考訳(メタデータ) (2024-04-30T16:00:21Z) - OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System [7.1083241462091165]
我々は,光学的文字認識(OCR)を基本とする外部モダリティ誘導データマイニングフレームワークを導入し,画像から統計的特徴を抽出する。
提案手法の重要な側面は、単一のモーダル認識モデルを用いて抽出された外部モーダル特徴のアライメントであり、畳み込みニューラルネットワークによって符号化された画像特徴である。
本手法は欠陥検出モデルのリコール率を大幅に向上させ,挑戦シナリオにおいても高い堅牢性を維持する。
論文 参考訳(メタデータ) (2024-03-18T07:41:39Z) - MatSAM: Efficient Extraction of Microstructures of Materials via Visual
Large Model [11.130574172301365]
Segment Anything Model (SAM)は、強力な深い特徴表現とゼロショットの一般化機能を備えた大きなビジュアルモデルである。
本稿では,SAMに基づく汎用的で効率的なマイクロ構造抽出法であるMatSAMを提案する。
簡単なが効果的な点ベースのプロンプト生成戦略が設計され、ミクロ構造の分布と形状に基づいている。
論文 参考訳(メタデータ) (2024-01-11T03:18:18Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
ヒト脳の132領域への高速かつ正確なセグメンテーションのための新しい深層学習法を提案する。
提案モデルは、効率的なU-Netライクなネットワークと、異なるビューと階層関係の交差点の利点を利用する。
提案手法は,画像の事前処理や性能低下を伴わずに頭蓋骨や他の人工物を含む脳MRIデータに適用することができる。
論文 参考訳(メタデータ) (2022-08-30T16:06:07Z) - Advancing Plain Vision Transformer Towards Remote Sensing Foundation
Model [97.9548609175831]
約1億のパラメータを持つプレーンビジョントランスフォーマーを利用して、リモートセンシングタスク用にカスタマイズされた大規模なビジョンモデルを提案する。
具体的には、RS画像における大きな画像サイズと様々な向きのオブジェクトを扱うために、回転する様々なウィンドウアテンションを提案する。
検出タスクの実験は、DOTA-V1.0データセット上で81.16%のmAPを達成したすべての最先端モデルよりも、我々のモデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-08-08T09:08:40Z) - Contrastive Multiview Coding with Electro-optics for SAR Semantic
Segmentation [0.6445605125467573]
SARセマンティックセグメンテーションのためのマルチモーダル表現学習を提案する。
従来の研究とは異なり,本手法ではEO画像,SAR画像,ラベルマスクを併用した。
いくつかの実験により,本手法はモデル性能,サンプル効率,収束速度において既存の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-08-31T23:55:41Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
近年,1つの画像のみに基づく生成モデルによる完全学習が提案されている。
多様な外観のランダムなサンプルを生成するMOGANというMOrphologic-structure-aware Generative Adversarial Networkを紹介します。
合理的な構造の維持や外観の変化など、内部機能に重点を置いています。
論文 参考訳(メタデータ) (2021-03-04T12:45:23Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。