論文の概要: More Effective LLM Compressed Tokens with Uniformly Spread Position Identifiers and Compression Loss
- arxiv url: http://arxiv.org/abs/2409.14364v2
- Date: Fri, 27 Sep 2024 09:13:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 23:04:03.895724
- Title: More Effective LLM Compressed Tokens with Uniformly Spread Position Identifiers and Compression Loss
- Title(参考訳): 均一な位置同定と圧縮損失を有するLLM圧縮トークンの高効率化
- Authors: Runsong Zhao, Pengcheng Huang, Xinyu Liu, Chunyang Xiao, Tong Xiao, Jingbo Zhu,
- Abstract要約: 圧縮トークンの位置識別子の選択について検討し,新しい圧縮損失を提案する。
提案手法は, ICAEの4倍に比べて, 圧縮比が有意に高いことを実証的に実証した。
- 参考スコア(独自算出の注目度): 51.05017281146084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compressing Transformer inputs into compressd tokens allows running LLMs with improved speed and cost efficiency. Based on the compression method ICAE, we carefully examine the position identifier choices for compressed tokens and also propose a new compression loss. We demonstrate empirically that our proposed methods achieve significantly higher compression ratios (15x compared to 4x for ICAE), while being able to attain comparable reconstruction performance.
- Abstract(参考訳): Transformer の入力を圧縮トークンに圧縮することで、高速でコスト効率のよい LLM を実行することができる。
ICAEの圧縮手法に基づいて,圧縮トークンの位置識別選択を慎重に検討し,新しい圧縮損失を提案する。
提案手法は, ICAEの4倍の圧縮率 (4倍の圧縮比) を達成すると同時に, 同等の再構成性能が得られることを示す。
関連論文リスト
- SeqPE: Transformer with Sequential Position Encoding [76.22159277300891]
SeqPEは、各$n$次元位置指数をシンボルシーケンスとして表現し、軽量なシーケンシャル位置エンコーダを用いて埋め込みを学習する。
言語モデリング、長文質問応答、および2次元画像分類による実験により、SeqPEはパープレキシティ、正確なマッチング(EM)、精度の強いベースラインを超えるだけでなく、手作業によるアーキテクチャ再設計を必要とせず、多次元入力へのシームレスな一般化を可能にする。
論文 参考訳(メタデータ) (2025-06-16T09:16:40Z) - PaTH Attention: Position Encoding via Accumulating Householder Transformations [56.32365080761523]
PaTHは、ハウステリア変換の累積積に基づいて、フレキシブルなデータ依存位置符号化方式である。
家庭用行列の積をコンパクトに表現することで,効率的な並列学習アルゴリズムを導出する。
論文 参考訳(メタデータ) (2025-05-22T08:36:09Z) - Efficient Token Compression for Vision Transformer with Spatial Information Preserved [59.79302182800274]
トーケン圧縮は、トランスモデルの計算およびメモリ要求の低減に不可欠である。
本稿では,Prune と Merge という,効率的なハードウェア互換のトークン圧縮手法を提案する。
論文 参考訳(メタデータ) (2025-03-30T14:23:18Z) - Embedding Compression Distortion in Video Coding for Machines [67.97469042910855]
現在、ビデオ伝送は人間の視覚システム(HVS)だけでなく、分析のための機械認識にも役立っている。
本稿では,機械知覚関連歪み表現を抽出し,下流モデルに埋め込む圧縮歪埋め込み(CDRE)フレームワークを提案する。
我々のフレームワークは,実行時間,パラメータ数といったオーバーヘッドを最小限に抑えて,既存のコーデックのレートタスク性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2025-03-27T13:01:53Z) - UniPCGC: Towards Practical Point Cloud Geometry Compression via an Efficient Unified Approach [4.754973569457509]
我々は,UniPCGCと呼ばれる効率的な統合ポイントクラウド幾何圧縮フレームワークを提案する。
可逆圧縮、無損失圧縮、可変レート、可変複雑性をサポートする。
損失圧縮ではCR比が8.1%、損失圧縮ではBjontegaard Delta Rate(BD-Rate)が14.02%向上した。
論文 参考訳(メタデータ) (2025-03-24T10:51:28Z) - DAST: Context-Aware Compression in LLMs via Dynamic Allocation of Soft Tokens [20.044306399439265]
LLM(Large Language Models)は、長いコンテキスト入力を扱う際に、計算の非効率性と冗長な処理に直面する。
我々は,LLMの文脈関連性に関する本質的な理解を活用して圧縮を誘導する簡易かつ効果的な手法であるDAST(Dynamic Allocation of Soft Tokens)を提案する。
複数のベンチマークでの実験結果から、DASTが最先端の手法を超越していることが示されている。
論文 参考訳(メタデータ) (2025-02-17T06:55:13Z) - ICPC: In-context Prompt Compression with Faster Inference [0.0]
I CPC(In-context Prompt Compression)は,新規かつスケーラブルなプロンプト圧縮手法であり,プロンプト長を適応的に削減する。
I CPCの鍵となる考え方は、エンコーダを用いてプロンプトに現れる各単語の確率を計算し、情報関数を介して各単語が持つ情報を計算することである。
実験により、I CPCは、異なるカテゴリの長いテキストを効果的に圧縮し、異なるタイプのNLPタスクにおいてより優れた性能と速度を実現することができることを示した。
論文 参考訳(メタデータ) (2025-01-03T03:46:51Z) - L3TC: Leveraging RWKV for Learned Lossless Low-Complexity Text Compression [23.179381396167084]
我々はLearned Lossless Low-complexity Text Compression Method (L3TC)を紹介する。
RWKVモデルは、適度な圧縮比で高速な復号速度を達成する。
本稿では,頻繁なトークンをカバーするために,限定語彙を用いた外部認識トークン化手法を提案する。
論文 参考訳(メタデータ) (2024-12-21T14:24:32Z) - EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation [79.56709262189953]
EoRAは、圧縮されたLLaMA2/3モデルの様々なタスクにおけるエラーを補償する従来の手法より一貫して優れている。
EoRAは、圧縮エラーを補うスケーラブルでトレーニング不要なソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:59:03Z) - Perception Compressor:A training-free prompt compression method in long context scenarios [17.720102137585503]
パーセプション(Perception)は、大規模言語モデルのトレーニング不要なプロンプト圧縮手法である。
既存のメソッドのマージンを大きく上回り、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-09-28T07:13:33Z) - Token-level Correlation-guided Compression for Efficient Multimodal Document Understanding [54.532578213126065]
ほとんどの文書理解手法は、サブイメージ内の全てのトークンを保存し、それらを等しく扱う。
これにより、異なる情報性が無視され、画像トークンの数が大幅に増加する。
トークン処理を最適化するためのパラメータフリーかつプラグアンドプレイ手法であるトークンレベルの相関誘導圧縮を提案する。
論文 参考訳(メタデータ) (2024-07-19T16:11:15Z) - Contextual Position Encoding: Learning to Count What's Important [42.038277620194]
我々は,新しい位置符号化手法であるコンテキスト位置フロップ(CoPE)を提案する。
CoPEは、モデルによって決定された特定のトークンに位置を増すことによって、状況に応じて位置を条件付けることができる。
一般的な位置埋め込みが失敗するFlip-Flopタスクにおいて,CoPEが選択的コピー,カウント,Flip-Flopタスクを解くことができることを示す。
論文 参考訳(メタデータ) (2024-05-29T02:57:15Z) - Progressive Learning with Visual Prompt Tuning for Variable-Rate Image
Compression [60.689646881479064]
本稿では,変圧器を用いた可変レート画像圧縮のためのプログレッシブラーニングパラダイムを提案する。
視覚的プロンプトチューニングにインスパイアされた私たちは,エンコーダ側とデコーダ側でそれぞれ入力画像と隠蔽特徴のプロンプトを抽出するためにLPMを使用する。
提案モデルでは, 速度歪み特性の観点から現行の可変画像法よりも優れ, スクラッチから訓練した最先端の固定画像圧縮法にアプローチする。
論文 参考訳(メタデータ) (2023-11-23T08:29:32Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
クリックスルーレート(CTR)予測は、パーソナライズされたオンラインサービスにおいてコア機能モジュールとして機能する。
CTR予測のための従来のIDベースのモデルは、表形式の1ホットエンコードされたID特徴を入力として取る。
事前訓練された言語モデル(PLM)は、テキストのモダリティの文を入力として取る別のパラダイムを生み出した。
本稿では,CTR予測のためのIDベースモデルと事前学習言語モデル(FLIP)間の細粒度特徴レベルのアライメントを提案する。
論文 参考訳(メタデータ) (2023-10-30T11:25:03Z) - The Locality and Symmetry of Positional Encodings [9.246374019271938]
我々はtextbfBi Masked Language Models (BERT-style) における位置符号化の体系的研究を行う。
PEのコア関数は、局所性と対称性という2つの共通性質を同定することによって明らかにする。
2つの新しい探索タスクを導入し、現在のPEの弱点を定量化する。
論文 参考訳(メタデータ) (2023-10-19T16:15:15Z) - Lossy and Lossless (L$^2$) Post-training Model Size Compression [12.926354646945397]
本稿では,無損失圧縮と無損失圧縮を統一的に組み合わせた後学習モデルサイズ圧縮法を提案する。
精度を犠牲にすることなく安定な10times$圧縮比を達成でき、短時間で20times$圧縮比を小さくすることができる。
論文 参考訳(メタデータ) (2023-08-08T14:10:16Z) - Quick Dense Retrievers Consume KALE: Post Training Kullback Leibler
Alignment of Embeddings for Asymmetrical dual encoders [89.29256833403169]
我々は,高密度検索手法の推論効率を高めるための効率的かつ正確な手法であるKulback Leibler Alignment of Embeddings (KALE)を紹介した。
KALEは、バイエンコーダトレーニング後の従来の知識蒸留を拡張し、完全なリトレーニングやインデックス生成なしに効率的なクエリエンコーダ圧縮を可能にする。
KALEと非対称トレーニングを用いることで、3倍高速な推論を持つにもかかわらず、DistilBERTの性能を超えるモデルを生成することができる。
論文 参考訳(メタデータ) (2023-03-31T15:44:13Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
本稿では、損失のない画像圧縮とほぼロスレス画像圧縮の両面において、統合された強力な深い損失+残差(DLPR)符号化フレームワークを提案する。
VAEのアプローチにおける連立損失と残留圧縮の問題を解く。
ほぼロスレスモードでは、元の残差を量子化し、与えられた$ell_infty$エラー境界を満たす。
論文 参考訳(メタデータ) (2022-09-11T12:11:56Z) - Modeling Image Quantization Tradeoffs for Optimal Compression [0.0]
ロスシー圧縮アルゴリズムは、圧縮率を上げるために高周波データを定量化することでトレードオフを狙う。
本稿では,Deep Learningとminimax損失関数を用いた量子化テーブルの最適化手法を提案する。
論文 参考訳(メタデータ) (2021-12-14T07:35:22Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z) - Compressing Images by Encoding Their Latent Representations with
Relative Entropy Coding [5.687243501594734]
可変オートエンコーダ(VAE)は学習画像圧縮に広く利用されている。
本稿では,単一の画像に対して相対エントロピーに近い符号長で遅延表現を直接エンコードできる新しい手法であるRelative Entropy Coding (REC)を提案する。
論文 参考訳(メタデータ) (2020-10-02T20:23:22Z) - Rethinking Positional Encoding in Language Pre-training [111.2320727291926]
絶対的な位置符号化では、位置埋め込みと単語埋め込みに適用される付加操作が混合相関をもたらすことを示す。
我々はtextbfUntied textPositional textbfEncoding (T) を用いた textbfTransformer という新しい位置符号化手法を提案する。
論文 参考訳(メタデータ) (2020-06-28T13:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。